1
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
2
|
Sayyed Kassem L, Rajpal A, Barreiro MV, Ismail‐Beigi F. Beta-cell function in type 2 diabetes (T2DM): Can it be preserved or enhanced? J Diabetes 2023; 15:817-837. [PMID: 37522521 PMCID: PMC10590683 DOI: 10.1111/1753-0407.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 08/01/2023] Open
Abstract
Type 2 diabetes (T2DM) is a complex metabolic disorder manifested by hyperglycemia, insulin resistance, and deteriorating beta-cell function. A way to prevent progression of the disease might be to enhance beta-cell function and insulin secretion. However, most previous studies examined beta-cell function while patients were using glycemia-lowering agents without an adequate period off medications (washout). In the present review we focus on studies with a washout period. We performed a literature search (2010 to June 2021) using beta-cell function and enhancement. The evidence shows that beta-cell function can be enhanced. Bariatric surgery and very low calorie diets show improvement in beta-cell function in many individuals. In addition, use of glucagon-like peptide-1 receptor agonists for prolonged periods (3 years or more) can also lead to improvement of beta-cell function. Further research is needed to understand the mechanisms leading to improved beta-cell function and identify agents that could enhance beta-cell function in patients with T2DM.
Collapse
Affiliation(s)
- Laure Sayyed Kassem
- Case Western Reserve UniversityClevelandOhioUSA
- Cleveland VA Medical CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Aman Rajpal
- Case Western Reserve UniversityClevelandOhioUSA
- Cleveland VA Medical CenterCase Western Reserve UniversityClevelandOhioUSA
| | | | - Faramarz Ismail‐Beigi
- Case Western Reserve UniversityClevelandOhioUSA
- Cleveland VA Medical CenterCase Western Reserve UniversityClevelandOhioUSA
- University Hospitals of ClevelandClevelandOhioUSA
| |
Collapse
|
3
|
Gong L, Gao D, Zhang X, Chen S, Qian J. REL-NPMI: Exploring genotype and phenotype relationship of pancreatitis based on improved normalized point-by-point mutual information. Comput Biol Med 2023; 158:106868. [PMID: 37037149 DOI: 10.1016/j.compbiomed.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Pancreatitis is a relatively serious disease caused by the self-digestion of trypsin in the pancreas. The generation of diseases is closely related to gene and phenotype information. Generally, gene-phenotype relations are mainly obtained through clinical experiments, but the cost is huge. With the amount of published biomedical literature increasing exponentially, it carries a wealth of disease-related gene and phenotype information. This study provided an effective way to obtain disease-related gene and phenotype information. To our best knowledge, this work first attempted to explore relationships between genotype and phenotype about the pancreatitis from the computational perspective. It mined 6152 genes and 76,753 pairs of genotype and phenotype extracted from the biomedical literature about pancreatitis using text mining. Based on the above 76,753 pairs, the study proposed an improved normalized point-wise mutual information (REL-NPMI) model to optimize gene-phenotype relations related to pancreatitis, and obtained 12,562 gene-phenotype pairs which may be related to pancreatitis. The extracted top 20 results were validated and evaluated. The experimental results show that the method is promising for exploring pancreatitis' molecular mechanism, thus it provides a computational way for studying pancreatitis' disease pathogenesis. Data resources and the Pancreatitis Gene-Phenotype Association Database are available at http://114.116.4.45:8081/and resources are also available at https://github.com/polipoptbe8023/REL-NPMI.git.
Collapse
|
4
|
Al-Romaiyan A, Masocha W, Oyedemi S, Marafie SK, Huang GC, Jones PM, Persaud SJ. Commiphora myrrha stimulates insulin secretion from β-cells through activation of atypical protein kinase C and mitogen-activated protein kinase. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115937. [PMID: 36410575 DOI: 10.1016/j.jep.2022.115937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/22/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurvedic medicine has been used in the treatment of diabetes mellitus for centuries. In Arabia and some areas of Africa, Commiphora myrrha (CM) has been extensively used as a plant-based remedy. We have previously shown that an aqueous CM resin solution directly stimulates insulin secretion from MIN6 cells, a mouse β-cell line, and isolated mouse and human islets. However, the signaling pathways involved in CM-induced insulin secretion are completely unknown. Insulin secretion is normally triggered by elevations in intracellular Ca2+ ([Ca2+]i) through voltage gated Ca2+ channels (VGCC) and activation of protein kinases. Protein and lipid kinases such as protein kinase A (PKA), Ca2+-calmodulin dependent protein kinase II (CaMKII), phosphoinositide 3-kinases (PI3Ks), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), specifically extracellular signal-regulated kinases (ERK1/2), may be involved in receptor-operated insulin secretion. Therefore, we hypothesized that CM may induce insulin secretion by modulating the activity of VGCC and/or one or more of the above kinases. AIM OF THE STUDY To investigate the possible molecular mechanism of action of CM-induced insulin secretion. The effects of aqueous CM resin extract on [Ca2+]i and protein kinase activation from β-cells were examined. METHODS The effect of aqueous CM resin solution on [Ca2+]i was assessed using Ca2+ microfluorimetry. The involvement of VGCC in CM-induced insulin secretion was investigated using static and perifusion insulin secretion experiments in the presence of either EGTA, a Ca2+ chelator, or nifedipine, a blocker of VGCC. The involvement of kinase activation in the stimulatory effect of CM on insulin secretion was examined by using static and perifusion insulin secretion experiments in the presence of known pharmacological inhibitors and/or downregulation of specific kinases. The effects of CM on phosphorylation of PKCζ and ERK1/2 were also assessed using the Wes™ capillary-based protein electrophoresis. RESULTS Ca2+ microfluorimetry measurements showed that exposing MIN6 cells to CM (0.5-2 mg/mL) was not associated with changes in [Ca2+]i. Similarly, incubating MIN6 cells and mouse islets with EGTA and nifedipine, respectively, did not attenuate the insulin secretion induced by CM. However, incubating mouse and human islets with CM in the presence of staurosporine, a non-selective protein kinase inhibitor, completely blocked the effect of CM on insulin secretion. Exposing mouse islets to CM in the presence of H89, KN62 and LY294002, inhibitors of PKA, CaMKII and PI3K, respectively, did not reduce CM-induced insulin secretion. However, incubating mouse and human islets with CM in the presence of Ro 31-8220, a pan-PKC inhibitor, diminished insulin secretion stimulated by CM, whereas inhibiting the action of typical PKC (with Go6976) and PLCβ (with U73122) did not affect CM-stimulated insulin secretion. Similarly, downregulating typical and novel PKC by chronic exposure of mouse islets to phorbol 12-myristate 13-acetate (PMA) was also not associated with a decrease in the stimulatory effect of CM on insulin secretion. Interestingly, CM-induced insulin secretion from mouse islets was inhibited in the presence of the PKCζ inhibitor ZIP and a MAPK inhibitor PD 98059. In addition, Wes™ capillary-based protein electrophoresis indicated that expression of the phosphorylated forms of PKCζ and ERK1/2, a MAPK, was significantly increased following exposure of INS-1832/13 cells, a rat insulinoma cell line, to CM. CONCLUSIONS Our data indicate that CM directly stimulates insulin secretion through activating known downstream effectors of insulin-stimulus secretion coupling. Indeed, the increase in insulin secretion seen with CM is independent of changes in [Ca2+]i and does not involve activation of VGCC. Instead, the CM stimulatory effect on insulin secretion is completely dependent on protein kinase activation. Our findings indicate that CM could induce insulin exocytosis by stimulating the phosphorylation and activation of PKCζ, which in turn phosphorylates and activates ERK1/2.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Willias Masocha
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Sunday Oyedemi
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Sulaiman K Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait.
| | - Guo-Cai Huang
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| |
Collapse
|
5
|
Arunachalam K, Sreeja PS, Yang X. The Antioxidant Properties of Mushroom Polysaccharides can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance. Front Pharmacol 2022; 13:874474. [PMID: 35600869 PMCID: PMC9117613 DOI: 10.3389/fphar.2022.874474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetes mellitus is a prevalent metabolic and endocrine illness affecting people all over the world and is of serious health and financial concern. Antidiabetic medicine delivered through pharmacotherapy, including synthetic antidiabetic drugs, are known to have several negative effects. Fortunately, several natural polysaccharides have antidiabetic properties, and the use of these polysaccharides as adjuncts to conventional therapy is becoming more common, particularly in underdeveloped nations. Oxidative stress has a critical role in the development of diabetes mellitus (DM). The review of current literature presented here focusses, therefore, on the antioxidant properties of mushroom polysaccharides used in the management of diabetic complications, and discusses whether these antioxidant properties contribute to the deactivation of the oxidative stress-related signalling pathways, and to the amelioration of β-cell dysfunction and insulin resistance. In this study, we conducted a systematic review of the relevant information concerning the antioxidant and antidiabetic effects of mushrooms from electronic databases, such as PubMed, Scopus or Google Scholar, for the period 1994 to 2021. In total, 104 different polysaccharides from mushrooms have been found to have antidiabetic effects. Most of the literature on mushroom polysaccharides has demonstrated the beneficial effects of these polysaccharides on reactive oxygen and nitrogen species (RONS) levels. This review discuss the effects of these polysaccharides on hyperglycemia and other alternative antioxidant therapies for diabetic complications through their applications and limits, in order to gain a better understanding of how they can be used to treat DM. Preclinical and phytochemical investigations have found that most of the active polysaccharides extracted from mushrooms have antioxidant activity, reducing oxidative stress and preventing the development of DM. Further research is necessary to confirm whether mushroom polysaccharides can effectively alleviate hyperglycemia, and the mechanisms by which they do this, and to investigate whether these polysaccharides might be utilized as a complementary therapy for the prevention and management of DM in the future.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Essaouiba A, Jellali R, Poulain S, Tokito F, Gilard F, Gakière B, Kim SH, Legallais C, Sakai Y, Leclerc E. Analysis of the transcriptome and metabolome of pancreatic spheroids derived from human induced pluripotent stem cells and matured in an organ-on-a-chip. Mol Omics 2022; 18:791-804. [DOI: 10.1039/d2mo00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The differentiation of pancreatic cells from hiPSC is one of the emerging strategies to achieve an in vitro pancreas model. Here, hiPSC-derived β-like-cells spheroids were cultured in microfluidic environment and characterized using omics analysis.
Collapse
Affiliation(s)
- Amal Essaouiba
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
7
|
Lee S, Jeong YK, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Expression of Fibrotic Mediators in Mice With Chronic Pancreatitis. J Cancer Prev 2020; 24:233-239. [PMID: 31950023 PMCID: PMC6951317 DOI: 10.15430/jcp.2019.24.4.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background Chronic pancreatitis (CP) is an irreversible progressive disease that destroys exocrine parenchyma, which are replaced by fibrous tissue. As pancreatic fibrosis is a key feature of CP, reducing fibrotic protein content in the pancreas is crucial for preventing CP. Studies suggest that NF-κB facilitates the expression of fibrotic mediators in pancreas and protein kinase C-δ (PKC-δ) regulates NF-κB activation in stimulated pancreatic acinar cells. Docosahexaenoic acid (DHA) is an omega-3 fatty acid having anti-inflammatory and anti-fibrotic effects. It has been shown to inhibit NF-κB activity in cerulein-stimulated pancreatic acinar cells which is a cellular model of CP. In the present study, we investigated if DHA inhibits expression of fibrotic mediators by reducing PKC-δ and NF-κB expression in mouse pancreatic tissues with CP. Methods For six weeks, mice were weekly induced for acute pancreatitis to develop CP. Furthermore, acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 7). Mice were administered DHA (10 μM) via drinking water before and after CP induction. Results Cerulein-induced pancreatic damages like decreased pancreatic weight/total body weight, leukocyte infiltration, necrosis of acinar cells, and vacuolization were found to be inhibited by DHA. Additionally, DHA inhibited cerulein-induced fibrotic mediators like alpha-smooth muscle actin and fibronectin in pancreas. DHA reduced expression of PKC-δ and NF-κB p65 in pancreatic tissues of cerulein-treated mice. Conclusions DHA may be beneficial in preventing CP by suppressing pancreatic expression of fibrotic mediators.
Collapse
Affiliation(s)
- Sle Lee
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Yoo Kyung Jeong
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
8
|
Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Int J Mol Sci 2019; 20:E5423. [PMID: 31683538 PMCID: PMC6862492 DOI: 10.3390/ijms20215423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3'untranslated region (3'UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
9
|
Zang HL, Huang GM, Ju HY, Tian XF. Integrative analysis of the inverse expression patterns in pancreas development and cancer progression. World J Gastroenterol 2019; 25:4727-4738. [PMID: 31528097 PMCID: PMC6718033 DOI: 10.3748/wjg.v25.i32.4727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As the malignant tumor, pancreatic cancer with a meager 5-years survival rate has been widely concerning. However, the molecular mechanisms that result in malignant transformation of pancreatic cells remain elusive.
AIM To investigate the gene expression profiles in normal or malignant transformed pancreas development.
METHODS MaSigPro and ANOVA were performed on two pancreas development datasets downloaded from the Gene Expression Omnibus database. Six pancreatic cancer datasets collected from TCGA database were used to establish differentially expressed genes related to pancreas development and pancreatic cancer. Moreover, gene clusters with highly similar interpretation patterns between pancreas development and pancreatic cancer progression were established by self-organizing map and singular value decomposition. Additionally, the hypergeometric test was performed to compare the corresponding interpretation patterns. Abnormal regions of metabolic pathway were analyzed using the Sub-pathway-GM method.
RESULTS This study established the continuously upregulated and downregulated genes at different stages in pancreas development and progression of pancreatic cancer. Through analysis of the differentially expressed genes, we established the inverse and consistent direction development-cancer pattern associations. Based on the application of the Subpathway-GM analysis, we established 17 significant metabolic sub-pathways that were closely associated with pancreatic cancer. Of note, the most significant metabolites sub-pathway was related to glycerophospholipid metabolism.
CONCLUSION The inverse and consistent direction development-cancer pattern associations were established. There was a significant correlation in the inverse patterns, but not consistent direction patterns.
Collapse
Affiliation(s)
- Hong-Liang Zang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guo-Min Huang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hai-Ying Ju
- Department of Hematology, Jilin Province Blood Center, Changchun 130000, Jilin Province, China
| | - Xiao-Feng Tian
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
10
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|
11
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Ribeiro MC, Peruchetti DB, Silva LS, Silva-Filho JL, Souza MC, Henriques MDG, Caruso-Neves C, Pinheiro AAS. LPS Induces mTORC1 and mTORC2 Activation During Monocyte Adhesion. Front Mol Biosci 2018; 5:67. [PMID: 30073169 PMCID: PMC6058081 DOI: 10.3389/fmolb.2018.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Monocyte adhesion is a crucial step in transmigration and can be induced by lipopolysaccharide (LPS). Here, we studied the role of mammalian target of rapamycin (mTOR) complexes, mTORC1 and mTORC2, and PKC in this process. We used THP-1 cells, a human monocytic cell line, to investigate monocyte adhesion under static and flow conditions. We observed that 1.0 μg/mL LPS increased PI3K/mTORC2 pathway and PKC activity after 1 h of incubation. WYE-354 10−6 M (mTORC2/mTORC1 inhibitor) and 10−6 M wortmannin avoided monocyte adhesion in culture plates. In addition, WYE also blocked LPS-induced CD11a expression. Interestingly, rapamycin and WYE-354 blocked both LPS-induced monocyte adhesion in a cell monolayer and actin cytoskeleton rearrangement, confirming mTORC1 involvement in this process. Once activated, PKC activates mTORC1/S6K pathway in a similar effect observed to LPS. Activation of the mTORC1/S6K pathway was attenuated by 10−6 M U0126, an MEK/ERK inhibitor, and 10−6 M calphostin C, a PKC inhibitor, indicating that the MEK/ERK/TSC2 axis acts as a mediator. In agreement, 80 nM PMA (a PKC activator) mimicked the effect of LPS on the activation of the MEK/ERK/TSC2/mTORC1/S6K pathway, monocyte adhesion to ECV cells and actin cytoskeleton rearrangement. Our findings show that LPS induces activation of mTOR complexes. This signaling pathway led to integrin expression and cytoskeleton rearrangement resulting in monocyte adhesion. These results describe a new molecular mechanism involved in monocyte adhesion in immune-based diseases.
Collapse
Affiliation(s)
- Marcelle C Ribeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João L Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Rio de Janeiro, Brazil
| | | | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Li B, Han X, Ye X, Ni J, Wu J, Dai J, Wu Z, Chen C, Wan R, Wang X, Hu G. Substance P-regulated leukotriene B4 production promotes acute pancreatitis-associated lung injury through neutrophil reverse migration. Int Immunopharmacol 2018; 57:147-156. [PMID: 29482159 DOI: 10.1016/j.intimp.2018.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant and inflammatory mediator involved in multiple inflammatory diseases. Substance P (SP) has been reported to promote production of LTB4 in itch-associated response in vivo and in some immune cells in vitro. Here, we investigated the role of LTB4 in acute pancreatitis (AP), AP-associated acute lung injury (ALI) and the related mechanisms of LTB4 production in AP. In vivo, murine AP model was induced by caerulein and lipopolysaccharide or L-arginine. The levels of LTB4 and its specific receptor BLT1 were markedly upregulated in both AP models. Blockade of BLT1 by LY293111 attenuated the severity of AP, decreased neutrophil reverse transendothelial cell migration (rTEM) into the circulation and alleviated the severity of ALI. In vitro, treatment of pancreatic acinar cells with SP increased LTB4 production. Furthermore, SP treatment increased phosphorylation of protein kinase C (PKC) α and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p-38 MAPK and c-Jun NH2-terminal kinase (JNK). Finally, blockade of neurokinin-1 receptor by CP96345 significantly attenuated the severity of AP and decreased the level of LTB4 when compared to AP group. In summary, these results show that SP regulates the production of LTB4 via PKCα/MAPK pathway, which further promotes AP-associated ALI through neutrophil rTEM.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Li C, A. Williams J. Regulation of CCK-induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|