1
|
Nagaraj G, Vellaichamy E. Triiodo-L-thyronine (T3) downregulates Npr1 gene (coding for natriuretic peptide receptor-A) transcription in H9c2 cells: involvement of β-AR-ROS signaling. Endocrine 2024; 85:1075-1090. [PMID: 38713329 DOI: 10.1007/s12020-024-03849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Natriuretic peptide receptor-A (NPR-A) signaling system is considered as an intrinsic productive mechanism of the heart that opposes abnormal cardiac remodeling and hypertrophic growth. NPR-A is coded by Npr1 gene, and its expression is downregulated in the hypertrophied heart. AIM We sought to examine the levels of Npr1 gene transcription in triiodo-L-thyronine (T3) treated hypertrophied cardiomyocyte (H9c2) cells, in vitro, and also the involvement of β-adrenergic receptor (β-AR) - Reactive oxygen species (ROS) signaling system in the down-regulation of Npr1 transcription also studied. MAIN METHODS Anti-hypertrophic Npr1 gene transcription was monitored in control and T3-treated (dose and time dependent) H9c2 cells, using a real time PCR method. Further, cell size, intracellular cGMP, ROS, hypertrophy markers (ANP, BNP, α-sk, α-MHC and β-MHC), β-AR, and protein kinase cGMP-dependent 1 (PKG-I) genes expression were also determined. The intracellular cGMP and ROS levels were determined by ELISA and DCF dye method, respectively. In addition, to neutralize T3 mediated ROS generation, H9c2 cells were treated with T3 in the presence and absence of antioxidants [curcumin (CU) or N-acetyl-L-cysteine (NAC)]. RESULTS A dose dependent (10 pM, 100 pM, 1 nM and 10 nM) and time dependent (12 h, 24 h and 48 h) down-regulation of Npr1 gene transcription (20, 39, 60, and 74% respectively; 18, 55, and 85%, respectively) were observed in T3-treated H9c2 cells as compared with control cells. Immunofluorescence analysis also revealed that a marked down regulation of NPR- A protein in T3-treated cells as compared with control cells. Further, a parallel downregulation of cGMP and PKG-I (2.4 fold) were noticed in the T3-treated cells. In contrast, a time dependent increased expression of β-AR (60, 72, and 80% respectively) and ROS (26, 48, and 74%, respectively) levels were noticed in T3-treated H9c2 cells as compared with control cells. Interestingly, antioxidants, CU or NAC co-treated T3 cells displayed a significant reduction in ROS (69 and 81%, respectively) generation and to increased Npr1 gene transcription (81 and 88%, respectively) as compared with T3 alone treated cells. CONCLUSION Our result suggest that down regulation of Npr1 gene transcription is critically involved in T3- induced hypertrophic growth in H9c2 cells, and identifies the cross-talk between T3-β-AR-ROS and NPR-A signaling.
Collapse
Affiliation(s)
- Gopinath Nagaraj
- Peptide Research and Molecular Cardiology Unit, Department of Biochemistry, University of Madras, Guindy campus, Chennai, Tamil Nadu, 600025, India
| | - Elangovan Vellaichamy
- Peptide Research and Molecular Cardiology Unit, Department of Biochemistry, University of Madras, Guindy campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
2
|
Yalameha B, Rezabakhsh A, Rahbarghazi R, Khaki-Khatibi F, Nourazarian A. Plastic particle impacts on the cardiovascular system and angiogenesis potential. Mol Cell Biochem 2024:10.1007/s11010-024-05081-2. [PMID: 39126457 DOI: 10.1007/s11010-024-05081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The extensive application of plastics in different sectors such as packaging, building, textiles, consumer products, and several industries has increased in recent years. Emerging data have confirmed that plastic wastes and segregates are problematic issues in aquatic and terrestrial ecosystems. The decomposition of plastic particles (PPs) leads to the release of microplastics (MPs) and nanoplastics (NPs) into the surrounding environment and entry of these particles will be problematic in unicellular and multicellular creatures. It was suggested that PPs can easily cross all biological barriers and reach different organs, especially the cardiovascular system, with the potential to modulate several molecular pathways. It is postulated that the direct interaction of PPs with cellular and subcellular components induces genotoxicity and cytotoxicity within the cardiovascular system. Meanwhile, being inert carriers, PPs can intensify the toxicity of other contaminants inside the cardiovascular system. Here, in this review article, several underlying mechanisms related to PP toxicity in the cardiovascular system were discussed in detail.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-14733, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51666-14733, Iran.
| | - Fatemeh Khaki-Khatibi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-14733, Iran.
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
3
|
Bao Q, Zhang B, Zhou L, Yang Q, Mu X, Liu X, Zhang S, Yuan M, Zhang Y, Che J, Wei W, Liu T, Li G, He J. CNP Ameliorates Macrophage Inflammatory Response and Atherosclerosis. Circ Res 2024; 134:e72-e91. [PMID: 38456298 DOI: 10.1161/circresaha.123.324086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND CNP (C-type natriuretic peptide), an endogenous short peptide in the natriuretic peptide family, has emerged as an important regulator to govern vascular homeostasis. However, its role in the development of atherosclerosis remains unclear. This study aimed to investigate the impact of CNP on the progression of atherosclerotic plaques and elucidate its underlying mechanisms. METHODS Plasma CNP levels were measured in patients with acute coronary syndrome. The potential atheroprotective role of CNP was evaluated in apolipoprotein E-deficient (ApoE-/-) mice through CNP supplementation via osmotic pumps, genetic overexpression, or LCZ696 administration. Various functional experiments involving CNP treatment were performed on primary macrophages derived from wild-type and CD36 (cluster of differentiation 36) knockout mice. Proteomics and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS We observed a negative correlation between plasma CNP concentration and the burden of coronary atherosclerosis in patients. In early atherosclerotic plaques, CNP predominantly accumulated in macrophages but significantly decreased in advanced plaques. Supplementing CNP via osmotic pumps or genetic overexpression ameliorated atherosclerotic plaque formation and enhanced plaque stability in ApoE-/- mice. CNP promoted an anti-inflammatory macrophage phenotype and efferocytosis and reduced foam cell formation and necroptosis. Mechanistically, we found that CNP could accelerate HIF-1α (hypoxia-inducible factor 1-alpha) degradation in macrophages by enhancing the interaction between PHD (prolyl hydroxylase domain-containing protein) 2 and HIF-1α. Furthermore, we observed that CD36 bound to CNP and mediated its endocytosis in macrophages. Moreover, we demonstrated that the administration of LCZ696, an orally bioavailable drug recently approved for treating chronic heart failure with reduced ejection fraction, could amplify the bioactivity of CNP and ameliorate atherosclerotic plaque formation. CONCLUSIONS Our study reveals that CNP enhanced plaque stability and alleviated macrophage inflammatory responses by promoting HIF-1α degradation, suggesting a novel atheroprotective role of CNP. Enhancing CNP bioactivity may offer a novel pharmacological strategy for treating related diseases.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Bangying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Lu Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Qian Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xiaofeng Mu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Shiying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jingjin Che
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe (W.W.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China (J.H.)
| |
Collapse
|
4
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Endocytosis and signaling of angiotensin II type 1 receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:141-157. [PMID: 36631190 DOI: 10.1016/bs.pmbts.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A vasoactive octapeptide angiotensin II (Ang II) hormone is the key regulator of the renin-angiotensin system (RAS). It binds with the two different plasma membrane receptors like angiotensin II type 1 (AT1) and type 2 (AT2) and consequence various biological responses occur. Further, AT1 has two subtypes such as AT1A and AT1B. These angiotensin receptors are classified to be G protein-coupled receptors (GPCRs). The main constituent of RAS is the AT1 receptor (AT1R), and its activation, signal transduction, and regulation have been extensively studied. After Ang II stimulation, the ligand-receptor complexes internalized and trafficked through the early endosome, recycling endosome, and some receptors skipped the recycling endosome and trafficked to the lysosome for metabolic degradation. Moreover, some short sequence motifs located in the carboxyl-terminus (CT) of the receptor play a vital role in the internalization, phosphorylation, subcellular trafficking, signaling, and desensitization. Furthermore, in endocytosis, the various proteins interact with the CT region of the receptor. This chapter highlights the basic mechanism of AT1 receptor internalization, trafficking and signaling in both physiological and pathophysiological conditions.
Collapse
|
6
|
Mani I, Singh V. An overview of receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:1-18. [PMID: 36631188 DOI: 10.1016/bs.pmbts.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocytosis is a cellular process which mediates receptor internalization, nutrient uptake, and the regulation of cell signaling. Microorganisms (many bacteria and viruses) and toxins also use the same process and enter the cells. Generally, endocytosis is considered in the three forms such as phagocytosis (cell eating), pinocytosis (cell drinking), and highly selective receptor-mediated endocytosis (clathrin-dependent and independent). Several endocytic routes exist in an analogous, achieving diverse functions. Most studies on endocytosis have used transformed cells in culture. To visualize the receptor internalization, trafficking, and signaling in subcellular organelles, a green fluorescent protein-tagged receptor has been utilized. It also helps to visualize the endocytosis effects in live-cell imaging. Confocal laser microscopy increases our understanding of receptor endocytosis and signaling. Site-directed mutagenesis studies demonstrated that many short-sequence motifs of the cytoplasmic domain of receptors significantly play a vital role in receptor internalization, subcellular trafficking, and signaling. However, other factors also regulate receptor internalization through clathrin-coated vesicles. Receptor endocytosis can occur through clathrin-dependent and clathrin-independent pathways. This chapter briefly discusses the internalization, trafficking, and signaling of various receptors in normal conditions. In addition, it also highlights the malfunction of the receptor in disease conditions.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
7
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
8
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
9
|
Ragini, Sakshi, Saini A, Mani I. Endocytosis and signaling of 5-HT1A receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:113-123. [PMID: 36813354 DOI: 10.1016/bs.pmbts.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neurotransmitter serotonin (also known as 5-hydroxytryptamine, 5-HT) regulates many important physiological as well as pathological functions in the body like psychoemotional, sensation, blood circulation, food intake, autonomic, memory, sleep, pain, etc. 5-HT binds to its receptor 5-HT1A to initiate GTP exchange at the Gi/o protein, which activates the receptor G protein complex. G protein subunits attach to different effectors and generate various responses, such as inhibition of adenyl cyclase enzyme and regulates the opening of Ca++ and K+ ion channels. Activated signalling cascades activate protein kinase C (PKC) (a second messenger), which further induces the detachment of Gβγ-dependent receptor signaling and leads to 5-HT1A internalization. After internalization, 5-HT1A receptor attaches to the Ras-ERK1/2 pathway. The receptor further trafficks to the lysosome for degradation. Receptor skips the trafficking to the lysosomal compartments and undergoes dephosphorylation. Dephosphorylated receptors now recycled back to the cell membrane. In this chapter, we have discussed the internalization, trafficking and signaling of the 5-HT1A receptor.
Collapse
Affiliation(s)
- Ragini
- Department of Biotechnology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sakshi
- Department of Biotechnology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
10
|
Mani I, Singh V. Receptor biology: Challenges and opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:337-349. [PMID: 36813364 DOI: 10.1016/bs.pmbts.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor biology provides a great opportunity to understand the ligand-receptor signaling involved in health and disease processes. Receptor endocytosis and signaling play a vital role in health conditions. Receptor-based signaling is the main form of communication between cells and cells with the environment. However, if any irregularities happen during these events, the consequences of pathophysiological conditions occur. Various methods are utilized to know structure, function, and regulation of receptor proteins. Further, live-cell imaging and genetic manipulations have aided in the understanding of receptor internalization, subcellular trafficking, signaling, metabolic degradation, etc. Understanding the genetics, biochemistry, and physiology of receptors and ligands is very helpful to explore various aspects such as prognosis, diagnosis, and treatment of disease. However, there are enormous challenges that exist to explore receptor biology further. This chapter briefly discusses the current challenges and emerging opportunities of receptor biology.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
11
|
Khurana ML, Mani I, Kumar P, Ramasamy C, Pandey KN. Ligand-Dependent Downregulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Role of miR-128 and miR-195. Int J Mol Sci 2022; 23:ijms232113381. [PMID: 36362173 PMCID: PMC9657974 DOI: 10.3390/ijms232113381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Cardiac hormones act on the regulation of blood pressure (BP) and cardiovascular homeostasis. These hormones include atrial and brain natriuretic peptides (ANP, BNP) and activate natriuretic peptide receptor-A (NPRA), which enhance natriuresis, diuresis, and vasorelaxation. In this study, we established the ANP-dependent homologous downregulation of NPRA using human embryonic kidney-293 (HEK-293) cells expressing recombinant receptor and MA-10 cells harboring native endogenous NPRA. The prolonged pretreatment of cells with ANP caused a time- and dose-dependent decrease in 125I-ANP binding, Guanylyl cyclase (GC) activity of receptor, and intracellular accumulation of cGMP leading to downregulation of NPRA. Treatment with ANP (100 nM) for 12 h led to an 80% decrease in 125I-ANP binding to its receptor, and BNP decreased it by 62%. Neither 100 nM c-ANF (truncated ANF) nor C-type natriuretic peptide (CNP) had any effect. ANP (100 nM) treatment also decreased GC activity by 68% and intracellular accumulation cGMP levels by 45%, while the NPRA antagonist A71915 (1 µM) almost completely blocked ANP-dependent downregulation of NPRA. Treatment with the protein kinase G (PKG) stimulator 8-(4-chlorophenylthio)-cGMP (CPT-cGMP) (1 µM) caused a significant increase in 125I-ANP binding, whereas the PKG inhibitor KT 5823 (1 µM) potentiated the effect of ANP on the downregulation of NPRA. The transfection of miR-128 significantly reduced NPRA protein levels by threefold compared to control cells. These results suggest that ligand-dependent mechanisms play important roles in the downregulation of NPRA in target cells.
Collapse
|
12
|
Yang W, Jannatun N, Zeng Y, Liu T, Zhang G, Chen C, Li Y. Impacts of microplastics on immunity. FRONTIERS IN TOXICOLOGY 2022; 4:956885. [PMID: 36238600 PMCID: PMC9552327 DOI: 10.3389/ftox.2022.956885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Most disposable plastic products are degraded slowly in the natural environment and continually turned to microplastics (MPs) and nanoplastics (NPs), posing additional environmental hazards. The toxicological assessment of MPs for marine organisms and mammals has been reported. Thus, there is an urgent need to be aware of the harm of MPs to the human immune system and more studies about immunological assessments. This review focuses on how MPs are produced and how they may interact with the environment and our body, particularly their immune responses and immunotoxicity. MPs can be taken up by cells, thus disrupting the intracellular signaling pathways, altering the immune homeostasis and finally causing damage to tissues and organs. The generation of reactive oxygen species is the mainly toxicological mechanisms after MP exposure, which may further induce the production of danger-associated molecular patterns (DAMPs) and associate with the processes of toll-like receptors (TLRs) disruption, cytokine production, and inflammatory responses in immune cells. MPs effectively interact with cell membranes or intracellular proteins to form a protein-corona, and combine with external pollutants, chemicals, and pathogens to induce greater toxicity and strong adverse effects. A comprehensive research on the immunotoxicity effects and mechanisms of MPs, including various chemical compositions, shapes, sizes, combined exposure and concentrations, is worth to be studied. Therefore, it is urgently needed to further elucidate the immunological hazards and risks of humans that exposed to MPs.
Collapse
Affiliation(s)
- Wenjie Yang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nahar Jannatun
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tinghao Liu
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, National Centre for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
14
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
15
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
16
|
Yee MSL, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, Tan BK, Wong CY, Leong CO. Impact of Microplastics and Nanoplastics on Human Health. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:496. [PMID: 33669327 PMCID: PMC7920297 DOI: 10.3390/nano11020496] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end up in landfill, oceans and other waterways. These plastics are discarded in vast numbers each day, and the breaking down of the plastics from micro- to nano-sizes has led to worries about how toxic these plastics are to the environment and humans. While, there are several earlier studies reported the effects of micro- and nano-plastics have on the environment, there is scant research into their impact on the human body at subcellular or molecular levels. In particular, the potential of how nano-plastics move through the gut, lungs and skin epithelia in causing systemic exposure has not been examined thoroughly. This review explores thoroughly on how nanoplastics are created, how they behave/breakdown within the environment, levels of toxicity and pollution of these nanoplastics, and the possible health impacts on humans, as well as suggestions for additional research. This paper aims to inspire future studies into core elements of micro- and nano-plastics, the biological reactions caused by their specific and unusual qualities.
Collapse
Affiliation(s)
- Maxine Swee-Li Yee
- Centre of Nanotechnology and Advanced Materials, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Malaysia
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.K.L.); (W.-M.L.)
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin King Looi
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.K.L.); (W.-M.L.)
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.K.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Shew-Fung Wong
- Center for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (S.-F.W.); (Y.-Y.K.); (B.-K.T.); (C.-Y.W.)
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yih-Yih Kok
- Center for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (S.-F.W.); (Y.-Y.K.); (B.-K.T.); (C.-Y.W.)
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Boon-Keat Tan
- Center for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (S.-F.W.); (Y.-Y.K.); (B.-K.T.); (C.-Y.W.)
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chiew-Yen Wong
- Center for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (S.-F.W.); (Y.-Y.K.); (B.-K.T.); (C.-Y.W.)
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.K.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
17
|
Zhang Z, Tang J, He X, Zhu M, Gan S, Guo X, Zhang X, Zhang J, Hu W, Chu M. Comparative Transcriptomics Identify Key Hypothalamic Circular RNAs that Participate in Sheep ( Ovis aries) Reproduction. Animals (Basel) 2019; 9:ani9080557. [PMID: 31416269 PMCID: PMC6721059 DOI: 10.3390/ani9080557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The hypothalamus plays crucial roles in sheep reproduction. However, the expression profiles of sheep hypothalamic circular RNA (circRNA), which has been proved to exert important functions in many physiological processes, remain largely unknown. In this study, we used RNA sequencing to explore the expression of circRNAs in the hypothalamus of sheep with the FecB ++ genotype. The results suggested that several key hypothalamic circRNAs may participate in sheep reproduction by influencing gonadotropin-releasing hormone (GnRH) activities or affecting key gene expression indirectly or directly. This study provides a further reference for understanding the differences of sheep fecundity. Abstract Circular RNA (circRNA), as an emerging class of noncoding RNA, has been found to play key roles in many biological processes. However, its expression profile in the hypothalamus, a powerful organ initiating the reproductive process, has not yet been explored. Therefore, we used RNA sequencing to explore the expression of circRNAs in the hypothalamus of sheep with the FecB ++ genotype. We totally identified 41,863 circRNAs from sheep hypothalamus, in which 333 (162 were upregulated, while 171 were downregulated) were differentially expressed in polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF), moreover, 340 circRNAs (163 were upregulated, while 177 were downregulated) were differentially expressed in polytocous sheep in the luteal phase versus monotocous sheep in the luteal sheep (PL vs. ML). We also identified several key circRNAs including oar_circ_0018794, oar_circ_0008291, oar_circ_0015119, oar_circ_0012801, oar_circ_0010234, and oar_circ_0013788 through functional enrichment analysis and oar_circ_0012110 through a competing endogenous RNA network, most of which may participate in reproduction by influencing gonadotropin-releasing hormone (GnRH) activities or affecting key gene expression, indirectly or directly. Our study explored the overall expression profile of circRNAs in sheep hypothalamus, which potentially provides an alternative insight into the mechanism of sheep prolificacy without the effects of FecB mutation.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxia Zhu
- Agricultural College, Liaocheng University, Liaocheng 252059, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
18
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|