1
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Zhao J, Xu Y. PITX1 plays essential functions in cancer. Front Oncol 2023; 13:1253238. [PMID: 37841446 PMCID: PMC10570508 DOI: 10.3389/fonc.2023.1253238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
PITX1, also known as the pituitary homeobox 1 gene, has emerged as a key regulator in animal growth and development, attracting significant research attention. Recent investigations have revealed the implication of dysregulated PITX1 expression in tumorigenesis, highlighting its involvement in cancer development. Notably, PITX1 interacts with p53 and exerts control over crucial cellular processes including cell cycle progression, apoptosis, and chemotherapy resistance. Its influence extends to various tumors, such as esophageal, colorectal, gastric, and liver cancer, contributing to tumor progression and metastasis. Despite its significance, a comprehensive review examining PITX1's role in oncology remains lacking. This review aims to address this gap by providing a comprehensive overview of PITX1 in different cancer types, with a particular focus on its clinicopathological significance.
Collapse
Affiliation(s)
- Jingpu Zhao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Akhavanfar R, Shafagh SG, Mohammadpour B, Farahmand Y, Lotfalizadeh MH, Kookli K, Adili A, Siri G, Eshagh Hosseini SM. A comprehensive insight into the correlation between ncRNAs and the Wnt/β-catenin signalling pathway in gastric cancer pathogenesis. Cell Commun Signal 2023; 21:166. [PMID: 37386429 PMCID: PMC10308667 DOI: 10.1186/s12964-023-01092-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/26/2023] [Indexed: 07/01/2023] Open
Abstract
During the past decades, gastric cancer (GC) has emerged as one of the most frequent malignancies with a growing rate of prevalence around the world. Despite considerable advances in therapeutic methods, the prognosis and management of patients with gastric cancer (GC) continue to be poor. As one of the candidate molecular targets in the treatment of many types of cancer, the Wnt/β-catenin pathway includes a family of proteins that have important functions in adult tissue homeostasis and embryonic development. The aberrant regulation of Wnt/β-catenin signaling is strongly correlated with the initiation and development of numerous cancers, including GC. Therefore, Wnt/β-catenin signaling has been identified as one of the main targets for extending therapeutic approaches for GC patients. Non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, are important components of epigenetic mechanisms in gene regulation. They play vital roles in various molecular and cellular processes and regulate many signaling pathways, such as Wnt/β-catenin pathways. Insights into these regulatory molecules involved in GC development may lead to the identification of potential targets for overcoming the limitations of current therapeutic approaches. Consequently, this review aimed to provide a comprehensive overview of ncRNAs interactions involved in Wnt/β-catenin pathway function in GC with diagnostic and therapeutic perspectives. Video Abstract.
Collapse
Affiliation(s)
- Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Liu J, Yang T, Huang Z, Chen H, Bai Y. Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 2022; 50:92. [PMID: 35593304 DOI: 10.3892/ijmm.2022.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
Collapse
Affiliation(s)
- Junjie Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Tianhao Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Zishen Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Huifang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| |
Collapse
|
5
|
Ding W, Wu L, Li X, Chang L, Liu G, Du H. Comprehensive analysis of competitive endogenous RNAs network: Identification and validation of prediction model composed of mRNA signature and miRNA signature in gastric cancer. Oncol Lett 2022; 23:150. [PMID: 35350591 PMCID: PMC8941526 DOI: 10.3892/ol.2022.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC), one of the most lethal malignant tumors, is highly aggressive with a poor prognosis, while the molecular mechanisms underlying it remain largely unknown. Although advanced imaging techniques and comprehensive treatment facilitate the diagnosis and survival of some GC patients, the precise diagnosis and prognosis are still a challenge. The present study used publicly available gene expression profiles from The Cancer Genome Atlas and Gene Expression Omnibus datasets including mRNA, micro (mi)RNA and circular (circ)RNA of GC to establish a competing endogenous RNA network (ceRNA). Further, the present study performed least absolute shrinkage and selector operator regression analysis on the hub RNAs to establish a prediction model with mRNA and miRNA. The ceRNA network contained 109 edges and 56 nodes and the visible network contains 13 miRNAs, 9 circRNAs and 34 mRNAs. The five mRNA-based signature were CTF1, FKBP5, RNF128, GSTM2 and ADAMTS1. The area under curve (AUC) value of the diagnosis training cohort was 0.9975. The prognosis of the high-risk group (RiskScore >4.664) was worse compared with that of the low-risk group (RiskScore ≤4.664; P<0.05) in the training cohort. The five miRNA-based signature were miR-145-5p, miR-615-3p, miR-6507-5p, miR-937-3p and miR-99a-3p. The AUC value of the diagnosis training cohort was 0.9975. The prognosis of the high-risk group (RiskScore >1.621) was worse compared with that of the low-risk group (RiskScore ≤1.621; P<0.05) in the training cohort. The validation cohorts indicated that both five mRNA and five miRNA-based signatures had strong predictive power in diagnosis and prognosis for GC. In conclusion, a ceRNA network was established for GC and a five mRNA-based signature and a five miRNA-based signature was identified that enabled diagnosis and prognosis of GC by assigning patient to a high-risk group or low-risk group.
Collapse
Affiliation(s)
- Wenshuang Ding
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510030, P.R. China
| | - Liqiong Wu
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510030, P.R. China
| | - Xiubo Li
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510030, P.R. China
| | - Lijun Chang
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510030, P.R. China
| | - Guorong Liu
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510030, P.R. China
| | - Hong Du
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510030, P.R. China
| |
Collapse
|
6
|
MiR-200a-3p promotes gastric cancer progression by targeting DLC-1. J Mol Histol 2021; 53:39-49. [PMID: 34751841 DOI: 10.1007/s10735-021-10037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies, ranking the third highest mortality rate worldwide. Due to the insidious symptoms and difficulty in early detection, patients with GS were mostly in the middle and late stages when they were diagnosed. Although ontogenetic or tumor-suppressive effects of miRNA-200a-3p have been demonstrated, the exact mechanism underlying GC is not clear. Therefore, the expression, effect, and mechanism of miRNA-200a-3p in GC progression were systematically investigated in this study. qRT-PCR, Western blotting, and immunohistochemical staining were applied to investigate the miRNA-200a-3p and deleted in liver cancer 1 (DLC-1) expression. Cell viability, proliferation, apoptosis, migration, and invasion capabilities of GC cells were assessed using cell counting kit-8 (CCK-8) colorimetry, EdU integration, flow cytometry, wound healing, and the transwell assay. The relationship between miRNA-200a-3p and tumor growth was investigated by tumor xenograft assay in vivo. A dual-luciferase reporter assay was estimated to verify the connection between miR-200-3p and DLC-1. The results showed that miRNA-200a-3p expression was significantly increased in both GC tissues and cells. Furthermore, via DLC-1, miRNA-200a-3p promotes tumor growth and development. miRNA-200a-3p, by targeting DLC-1, can function as an oncogene in GC cells. Collectively, our findings indicated that the miRNA-200a-3p/DLC axis might provide a theological basis for potential improvements in GC treatment strategies.
Collapse
|
7
|
Zhang L, Ren R, Yang X, Ge Y, Zhang X, Yuan H. Oncogenic role of early growth response-1 in liver cancer through the regulation of the microRNA-675/sestrin 3 and the Wnt/β-catenin signaling pathway. Bioengineered 2021; 12:5305-5322. [PMID: 34409922 PMCID: PMC8806569 DOI: 10.1080/21655979.2021.1964889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Early growth response-1 (EGR1) is a multi-domain protein and an immediate early transcription factor that is induced during liver injury and controls the expression of a variety of genes implicated in metabolism, cell proliferation, and tumorigenesis. Liver cancer (LC) is a highly malignant disease with high mortality worldwide. This study focused on the function of EGR1 in LC development and the mechanism of action. Two LC-related datasets GSE101728 and GSE138178 downloaded from the Gene Expression Omnibus (GEO) database were used for identification of key genes involved in cancer progression. A microarray analysis was conducted to identify differentially expressed microRNAs (miRNAs) after EGR1 knockdown. The target gene of miR-675 was identified by integrated analysis. EGR1 and miR-675 were highly expressed, whereas sestrin 3 (SESN3) was poorly expressed in LC tissues and cells. High EGR1 expression was associated with poor liver function and disease severity in patients with LC. Knockdown of EGR1 weakened proliferation and invasiveness of LC cells. EGR1 bound to the miR-675 promoter and increased its transcription, and miR-675 bound to SESN3 mRNA to induce its downregulation. miR-675 upregulation promoted the malignance of LC cells, but further upregulation of SESN3 reduced invasiveness of cells. SESN3 was enriched in the Wnt/β-catenin signaling. EGR1 and miR-675 activated the Wnt/β-catenin through downregulating SESN3. This study demonstrated that EGR1 promotes the malignant behaviors of LC cells through mediating the miRNA-675/SESN3/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ran Ren
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xue Yang
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiman Ge
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiajun Zhang
- Department of Clinical Laboratory, Danyang People's Hospital, Zhenjiang, Jiangsu, China
| | - Hongping Yuan
- Department of Clinical Laboratory, Danyang People's Hospital, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Fan X, Lou J, Zheng X, Wang Y, Wang J, Luo M, Hu M. Interference with lncRNA NEAT1 promotes the proliferation, migration, and invasion of trophoblasts by upregulating miR-411-5p and inhibiting PTEN expression. Immunopharmacol Immunotoxicol 2021; 43:334-342. [PMID: 33876722 DOI: 10.1080/08923973.2021.1910834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Preeclampsia (PE) is an idiopathic hypertensive disorder of pregnancy, which is related to abnormal placental villi development. Our previous study has found that lncRNA NEAT1 promotes apoptosis of trophoblasts, but the role of NEAT1 in proliferation, migration, and invasion is still unclear. This study explores the role of NEAT1 in proliferation, migration, and invasion of trophoblasts.Methods: NEAT1 and miR-411-5p levels were detected by quantitative real-time PCR. Colony formation assay detected cell proliferation and transwell assay detected cell migration and invasion. Dual-luciferase reporter assay detected the binding between NEAT1 and miR-411-5p as well as the binding between miR-411-5p and PTEN. RNA pull-down assay detected the combination between NEAT1 and miR-411-5p.Result: NEAT1 was increased and miR-411-5p was reduced in PE patients and human trophoblasts (HTR8/SVneo cells) that were induced with H2O2. Interference with NEAT1 promoted cell proliferation, migration, and invasion, and the miR-411-5p inhibitor reversed the effect of siRNA-NEAT1. The expression of PTEN was promoted in PE patients and HTR8/SVneo cells that were induced with H2O2, while the miR-411-5p mimic inhibited PTEN expression, and the plasmid-mediated PTEN overexpression reversed the effect of the miR-411-5p mimic. Besides, under H2O2 induction, the miR-411-5p mimic promoted cell proliferation, migration, and invasion, and the plasmid-mediated PTEN overexpression reversed the effect of the miR-411-5p mimic.Conclusion: Interference with lncRNA NEAT1 promoted the proliferation, migration, and invasion of trophoblasts and alleviated the development of PE, which was partly mediated by upregulating miR-411-5p and inhibiting PTEN expression.
Collapse
Affiliation(s)
- Xufei Fan
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianyi Lou
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiujuan Zheng
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiayue Wang
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mengmeng Luo
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Min Hu
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
9
|
Bioinformatics analysis of prognostic value of PITX1 gene in breast cancer. Biosci Rep 2020; 40:226181. [PMID: 32830857 PMCID: PMC7494990 DOI: 10.1042/bsr20202537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Paired-like homeodomain transcription factor 1 (PITX1) participates in miscellaneous biological processes including cell growth, development, progression and invasion in various malignant tumors. However, the analysis of the association between PITX1 expression and the survival in breast cancer remains unclear. METHODS Clinical prognostic parameters and survival data related to PITX1 in breast cancer patients were performed using the bioinformatic analysis including Oncomine, Bc-GenExMiner v4.3, PrognoScan and UCSC Xena. RESULTS We found that PITX1 gene expression was significantly higher in different histological classification of breast cancer. The Scarff-Bloom-Richardson (SBR) grade, Nottingham prognostic index (NPI), estrogen receptor (ER) negative, epidermal growth factor receptor-2 (HER2) positive, lymph node positive, triple-negative status and basal-like status were positively correlated with PITX1 level, except for patients' age and the progesterone receptor (PR) status. We have found that the increased PITX1 expression correlated with worse relapse-free survival, disease specific survival and overall survival. PITX1 was positively correlated with metastatic relapse-free survival and distant metastasis-free survival. We also confirmed positive correlation between PITX1 and the nucleotide-binding oligomerization domain 2 (NOD2). CONCLUSION The lower expression of PITX1 was associated with better clinical prognostic parameters and clinical survival in breast cancer according to the bioinformatic analysis.
Collapse
|
10
|
Wang Z, Yuan S, Cao X, Huang C, Zhang A, Lu C, Liu L. MiR‐335‐5p inhibits the progression of head and neck squamous cell carcinoma by targeting MAP3K2. FEBS Open Bio 2020. [PMCID: PMC7609806 DOI: 10.1002/2211-5463.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence has indicated that aberrantly expressed microRNAs (miRNAs) play key roles in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). Previous studies have shown that miR‐335‐5p can serve as a tumor suppressor or an oncogene in cancer. However, the clinical importance and biological effects of miR‐335‐5p in HNSCC have not been determined. Here, we investigated the expression pattern, functional role, and mechanisms of miR‐335‐5p in HNSCC. We showed a decreased expression of miR‐335‐5p in HNSCC samples from the TCGA and GEO databases. Consistently, we detected a downregulation of miR‐335‐5p in HNSCC cell lines and patient tissues. The expression of miR‐335‐5p was inversely correlated with advanced clinical TNM stage and lymph node metastasis in HNSCC patients. miR‐335‐5p overexpression inhibited HNSCC cell proliferation and induced apoptosis, while miR‐335‐5p inhibition had the opposite effects. miR‐335‐5p overexpression suppressed tumor growth in mice. Bioinformatic analyses and functional assays identified MAP3K2 as a target of miR‐335‐5p, and we showed that miR‐335‐5p downregulated mitogen‐activated protein kinase kinase kinase 2 (MAP3K2) expression in HNSCC cells. We found an inverse association between MAP3K2 and miR‐335‐5p expression in 38 pairs of HNSCC tissues. Furthermore, the effect of miR‐335‐5p overexpression on growth and metastasis as well as cell apoptosis in HNSCC cells could be partially rescued by MAP3K2 expression. Collectively, our data show that miR‐335‐5p inhibits the development of HNSCC by regulating MAP3K2 expression. Thus, these findings offer novel insights into a potential therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Shuoqing Yuan
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Xiaoming Cao
- Department of Otolaryngology Dezhou People‘s Hospital Dezhou China
| | - Chaoping Huang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Aobo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Cheng Lu
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| |
Collapse
|
11
|
Li P, Luo X, Xie Y, Li P, Hu F, Chu J, Chen X, Song W, Wang A, Tian G, Gu X. GC-Derived EVs Enriched with MicroRNA-675-3p Contribute to the MAPK/PD-L1-Mediated Tumor Immune Escape by Targeting CXXC4. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:615-626. [PMID: 33230461 PMCID: PMC7578556 DOI: 10.1016/j.omtn.2020.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) delivered by gastric cancer (GC)-secreted extracellular vesicles (GC-EVs) are associated with the immune escape in GC. Microarray analysis based on the GEO: GSE112369 dataset identified the presence of poorly expressed CXXC finger protein 4 (CXXC4) in GC, which was validated in clinical samples of GC patients. Moreover, prediction based on TargetScan analysis demonstrated the putative miR-675-3p binding site in the 3′ UTR region of CXXC4. Thereby, our study aims to determine the role of GC-EV-encapsulated miR-675-3p in GC. First, CXXC4 was found to be negatively correlated with programmed cell death 1 ligand 1 (PD-L1). The effects of mitogen-activated protein kinase (MAPK) signaling on GC were evaluated using activator of the MAPK pathway. The overexpression of CXXC4 led to a downregulated MAPK signaling pathway, thus decreasing PD-L1 expression to augment the proliferation and activation of T cells co-cultured with GC HGC-27 cells. GC-EV-encapsulated miR-675-3p negatively regulated the expression of its target gene CXXC4. GC-EV-encapsulated miR-675-3p increased PD-L1 expression to stimulate the immune escape in vitro and EV-encapsulated miR-675-3p accelerated cisplatin resistance in vivo. Collectively, the aforementioned findings present a mechanism in which EV-mediated miR-675-3p upregulates PD-L1 expression, promoting immune escape in GC.
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China.,Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, 68167 Mannheim, Germany
| | - Xingdong Luo
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Yue Xie
- Department of General Surgery, Gaoyou Traditional Chinese Medicine Hospital, Gaoyou 225600, P.R. China
| | - Pengfei Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Fangyong Hu
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Xiaojun Chen
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Ali Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Xiang Gu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| |
Collapse
|
12
|
Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep 2020; 47:6357-6374. [PMID: 32743775 DOI: 10.1007/s11033-020-05695-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
Accumulating evidence has reported that H19 long non-coding RNA (lncRNA) expression level is deregulated in human cancer. It has been also demonstrated that de-regulated levels of H19 could affect cancer biology by various mechanisms including microRNA (miRNA) production (like miR-675), miRNA sponging and epigenetic modifications. Furthermore, lncRNA could act as a potential diagnosis and prognosis biomarkers and also a candidate therapeutic approach for different human cancers. In this narrative review, we shed light on the molecular mechanism of H19 in cancer development and pathogenesis. Moreover, we discussed the expression pattern and diagnostic and therapeutic importance of H19 as a potential biomarker in a range of human malignancies from breast to osteosarcoma cancer.
Collapse
Affiliation(s)
- Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyedeh Nasrin Parvar
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
13
|
Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review). Oncol Rep 2020; 44:1299-1313. [PMID: 32700744 PMCID: PMC7448411 DOI: 10.3892/or.2020.7703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT), during which cancer cells lose the epithelial phenotype and gain the mesenchymal phenotype, has been verified to result in tumor migration and invasion. Numerous studies have shown that dysregulation of the Wnt/β‑catenin signaling pathway gives rise to EMT, which is characterized by nuclear translocation of β‑catenin and E‑cadherin suppression. Wnt/β‑catenin signaling was confirmed to be affected by microRNAs (miRNAs), several of which are down‑ or upregulated in metastatic cancer cells, indicating their complex roles in Wnt/β‑catenin signaling. In this review, we demonstrated the targets of various miRNAs in altering Wnt/β‑catenin signaling to promote or inhibit EMT, which may elucidate the underlying mechanism of EMT regulation by miRNAs and provide evidence for potential therapeutic targets in the treatment of invasive tumors.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Ge Zhang
- Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Liang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiayu Sun
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xin Liao
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Changfeng Zhu
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
14
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
15
|
Ghafouri-Fard S, Vafaee R, Shoorei H, Taheri M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene 2020; 757:144937. [PMID: 32640300 DOI: 10.1016/j.gene.2020.144937] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have critical roles in regulation of expression of genes. They can inhibit or decrease expression of target genes mostly via interaction with 3' untranslated region of their targets. Their crucial roles in the regulation of expression of tumor suppressor genes and oncogenes have potentiated them as contributors in tumorigenesis. Moreover, their stability in body fluids has enhanced their potential as cancer biomarkers. In the present review article, we describe the role of miRNAs in the pathogenesis of gastric cancer and advances in application of miRNAs as biomarkers and therapeutic targets in this kind of malignancy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yang Z, Dong X, Pu M, Yang H, Chang W, Ji F, Liu T, Wei C, Zhang X, Qiu X. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer 2020; 23:449-463. [PMID: 31673844 DOI: 10.1007/s10120-019-01019-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly investigated in numerous carcinomas containing gastric cancer (GC). The aim of our research is to inquire about the expression profile and role of LBX2-AS1 in GC. METHODS The expressions of LBX2-AS1, miR-219a-2-3p, FUS and LBX2 were measured by qRT-PCR. Western blot evaluated FUS and LBX2 protein levels. Cell proliferation and apoptosis were, respectively, evaluated by CCK-8, colony formation, EdU, flow cytometry and TUNEL assays. FISH and subcellular fractionation assays examined the position of LBX2-AS1. The binding between genes were certified by RIP, RNA pull-down, ChIP and luciferase reporter assays. Pearson correlation analysis analyzed the association of genes. Kaplan-Meier method detected the relationship of LBX2-AS1 expression with overall survival. RESULTS The up-regulation of LBX2-AS1 in GC tissues and cells was verified. Function assays proved that LBX2-AS1 down-regulation restricted the proliferation ability. Then, we unveiled the LBX2-AS1/miR-219a-2-3p/FUS axis. Additionally, LBX2-AS1 positively regulated LBX2 mRNA stability via FUS. LBX2 transcriptionally modulated LBX2-AS1. In the end, rescue and in vivo experiments validated the whole regulatory mechanism. CONCLUSION LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop mainly affected the proliferation and apoptosis abilities of GC cells, offering novel therapeutic targets for the treatment of patients with GC.
Collapse
Affiliation(s)
- Zhen Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinhua Dong
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Minglong Pu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hongwei Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weilong Chang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Feihong Ji
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tao Liu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Chongqing Wei
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xiefu Zhang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinguang Qiu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China. .,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Sheng Y, Hu R, Zhang Y, Luo W. MicroRNA-4317 predicts the prognosis of breast cancer and inhibits tumor cell proliferation, migration, and invasion. Clin Exp Med 2020; 20:417-425. [PMID: 32279128 DOI: 10.1007/s10238-020-00625-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Previous researches have indicated that miR-4317 was aberrantly expressed in several tumors. However, the potential role of miR-4317 in breast cancer is still unclear. The aim of this study was to investigate the potential role of miR-4317 in breast cancer. The relative expression levels of miR-4317 were detected in breast cancer tissues and cell lines using qRT-PCR analysis. The Kaplan-Meier survival curve and multivariate Cox regression analyses were used to investigate the prognostic significance of miR-4317 in breast cancer. CCK-8 and Transwell assays were performed to evaluate the effects of miR-4317 on cell proliferation, migration, and invasion. The results showed that miR-4317 expression was decreased in breast cancer tissues and cell lines. Downregulation of miR-4317 was significantly associated with lymph node metastasis, TNM stage, and poor prognosis. Overexpression of miR-4317 inhibited proliferation, migration, and invasion of breast cancer cells, while downregulation of miR-4317 exhibited the opposite effects. MYD88 may be a direct target of miR-4317. The results suggest miR-4317 may play a tumor suppressor role in breast cancer and inhibit proliferation, migration, and invasion of breast cancer cells by targeting MYD88. The findings provide novel evidence of miR-4317 as a potential prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yuwei Sheng
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China
| | - Rong Hu
- Department of Pharmacy, Shanghai First People's Hospital Baoshan Branch, Shanghai, 200940, China
| | - Yi Zhang
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China
| | - Wenjie Luo
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China.
| |
Collapse
|
18
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250:117547. [PMID: 32173311 DOI: 10.1016/j.lfs.2020.117547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is responsible for high morbidity and mortality worldwide. This cancer claims fifth place among other cancers. There are a number of factors associated with GC development such as alcohol consumption and tobacco smoking. It seems that genetic factors play significant role in GC malignancy and progression. MicroRNAs (miRs) are short non-coding RNA molecules with negative impact on the expression of target genes. A variety of studies have elucidated the potential role of miRs in GC growth. Investigation of molecular pathways has revealed that miRs function as upstream modulators of Wnt signaling pathway. This signaling pathway involves in important biological processes such as cell proliferation and differentiation, and its dysregulation is associated with GC invasion. At the present review, we demonstrate that how miRs regulate Wnt signaling pathway in GC malignancy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Wang C, Jiang X, Li X, Song S, Meng Q, Wang L, Lu Y, Xin X, Pu H, Gui X, Li T, Lu D. Long noncoding RNA HULC accelerates the growth of human liver cancer stem cells by upregulating CyclinD1 through miR675-PKM2 pathway via autophagy. Stem Cell Res Ther 2020; 11:8. [PMID: 31900225 PMCID: PMC6942366 DOI: 10.1186/s13287-019-1528-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The functions of HULC have been demonstrated in several cancers. However, its mechanism has not been elucidated in human liver cancer stem cells. METHODS Liver cancer stem cells were isolated from Huh7 cells; gene infection and tumorigenesis test in vitro and in vivo were performed. RESULTS We demonstrate that HULC promotes growth of liver cancer stem cells in vitro and in vivo. Mechanistically, HULC enhances the expression of Sirt1 dependent on miR675 and then induces the cellular autophagy through Sirt1. HULC enhances CyclinD1 and thereby increases pRB and inhibited P21 WAF1/CIP 1 via autophagy-miR675-PKM2 pathway in human liver cancer stem cells. Ultimately, our results demonstrate that CyclinD1 is required for the oncogenic functions of HULC in liver cancer stem cells. CONCLUSIONS It reveals the key molecular signaling pathways for HULC and provides important basic information for finding effective tumor therapeutic targets based on HULC.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuyu Meng
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoru Xin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Wang L, En H, Yang L, Zhang Y, Sun B, Gao J. miR-596 suppresses the expression of Survivin and enhances the sensitivity of osteosarcoma cells to the molecular targeting agent anlotinib. Onco Targets Ther 2019; 12:6825-6838. [PMID: 31686840 PMCID: PMC6709039 DOI: 10.2147/ott.s215145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background Osteosarcoma (OSA), the most common primary bone malignancy, is characterized by a wide spectrum of complicated pathologies and frequent distal metastasis and causes death in adolescents and young adults worldwide. Antitumor drug treatment strategies include various cytotoxic chemotherapy drugs, while molecular targeted therapy for OSA is currently less used. The present work revealed the role played by the miR-596/Survivin axis in affecting the sensitivity of OSA cells to anlotinib, a novel molecular targeting agent. Methods By virtual screening, we found that miR-596 might target Survivin by using an online tool (miRDB). RNA levels of miR-596 and Survivin in clinical specimens were examined with qPCR. The effect of miR-596 on anlotinib’s antitumor effect was examined with MTT experiments, the subcutaneous tumor model, or the intramuscular tumor model. Results Overexpression of miR-596 via lentiviral particles repressed the protein level of Survivin in U2OS cells. Transfection of miR-596 enhanced the antitumor effect of anlotinib on U2OS cells or five cell lines derived from OSA patients. Conclusion miR-596 targets Survivin and enhances the antitumor effect of anlotinib on OSA cells.
Collapse
Affiliation(s)
- Leisheng Wang
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong Province 264000, People's Republic of China
| | - He En
- Department of Outpatient, The 81st Group Army Hospital of Chinese People's Liberation Army, Zhangjiakou City, Hebei Province, People's Republic of China
| | - Lei Yang
- Department of Outpatient, The 80th Group Army Hospital of Chinese People's Liberation Army (formerly the 89th Hospital of the People's Liberation Army), Weifang City, Shandong Province, People's Republic of China
| | - Yanbing Zhang
- Department of Outpatient, The 81st Group Army Hospital of Chinese People's Liberation Army, Zhangjiakou City, Hebei Province, People's Republic of China
| | - Baisheng Sun
- Department of Emergency, The Fifth Medical Center of the General Hospital of the Chinese People's Liberation Army (formerly the 307th Hospital of the People's Liberation Army), Beijing 100071, People's Republic of China
| | - Jianjiang Gao
- Department of Emergency, Haiyang People's Hospital, Haiyang, Shandong 265100, People's Republic of China
| |
Collapse
|
21
|
Ma DB, Qin MM, Shi L, Ding XM. MicroRNA-6077 enhances the sensitivity of patients-derived lung adenocarcinoma cells to anlotinib by repressing the activation of glucose transporter 1 pathway. Cell Signal 2019; 64:109391. [PMID: 31421224 DOI: 10.1016/j.cellsig.2019.109391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Anlotinib is a novel molecular targeted agent targeting the vascular endothelial growth factor receptor, which differs from the other currently available non-small cell lung cancer (NSCLC) molecular targeted drugs targeting this receptor. Although the application of anlotinib may bring new hope for patients with advanced NSCLC, the cost of treatment is high. The results of this study showed that microRNA-6077 (miR-6077) represses the expression of GLUT1 (glucose transporter 1) and enhances the sensitivity of patient-derived lung adenocarcinoma (AC) cells to anlotinib. The miR-6077, which potentially binds to the 3'untranslated region of GLUT1, was identified and screened by miRDB, an online tool; sequences of miR-6077 were prepared as lentivirus particles. A549 cells (a lung adenocarcinoma cell line) and five patient-derived AC cell lines were infected with control miRNA or miR-6077, and subsequently treated with the indicated concentration of anlotinib. The expression of proteins, such as GLUT1, was determined by western blotting. The antitumor effect of anlotinib was identified through in-vitro (e.g., MTT) or in-vivo methods (e.g., subcutaneous tumor model). Overexpression of miR-6077 repressed the expression of GLUT1 and decreased the glucose uptake, lactate production, or ATP generation in AC cells. In addition, MiR-6077 may enhance the antitumor effect of anlotinib on A549 or patient-derived AC cell lines. Therefore, our results indicated that miR-6077 represses the expression of GLUT1 and enhances the sensitivity of patients-derived lung AC cells to anlotinib.
Collapse
Affiliation(s)
- De-Bin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Meng-Meng Qin
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Liang Shi
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China.
| | - Xin-Min Ding
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital affiliated to Capital Medical University, Beijing 100038, China.
| |
Collapse
|