1
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
2
|
Zuo H, Wang Y, Yuan M, Zheng W, Tian X, Pi Y, Zhang X, Song H. Small extracellular vesicles from HO-1-modified bone marrow-derived mesenchymal stem cells attenuate ischemia-reperfusion injury after steatotic liver transplantation by suppressing ferroptosis via miR-214-3p. Cell Signal 2023; 109:110793. [PMID: 37414107 DOI: 10.1016/j.cellsig.2023.110793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Donor shortage is a major problem that limits liver transplantation availability. Steatotic donor liver presents a feasible strategy to solve this problem. However, severe ischemia-reperfusion injury (IRI) is an obstacle to the adoption of steatotic transplanted livers. Evidence from our prior studies indicated that bone marrow mesenchymal stem cells modified with heme oxygenase-1 (HMSCs) can attenuate non-steatotic liver IRI. However, the contribution of HMSCs in transplanted steatotic liver IRI is unclear. Here, HMSCs and their derived small extracellular vesicles (HM-sEVs) alleviated IRI in transplanted steatotic livers. After liver transplantation, there was significant enrichment of the differentially expressed genes in the glutathione metabolism and ferroptosis pathways, accompanied by ferroptosis marker upregulation. The HMSCs and HM-sEVs suppressed ferroptosis and attenuated IRI in the transplanted steatotic livers. MicroRNA (miRNA) microarray and validation experiments indicated that miR-214-3p, which was abundant in the HM-sEVs, suppressed ferroptosis by targeting cyclooxygenase 2 (COX2). In contrast, COX2 overexpression reversed this effect. Knockdown of miR-214-3p in the HM-sEVs diminished its ability to suppress ferroptosis and protect liver tissues/cells. The findings suggested that HM-sEVs suppressed ferroptosis to attenuate transplanted steatotic liver IRI via the miR-214-3p-COX2 axis.
Collapse
Affiliation(s)
- Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory of Critical Care Medicine, Tianjin 300192, PR China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China
| | - Yilin Pi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China
| | - Xinru Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; Tianjin Key Laboratory of Organ Transplantation, Tianjin, PR China.
| |
Collapse
|
3
|
Cancer Stem Cells and Their Vesicles, Together with Other Stem and Non-Stem Cells, Govern Critical Cancer Processes: Perspectives for Medical Development. Int J Mol Sci 2022; 23:ijms23020625. [PMID: 35054811 PMCID: PMC8775347 DOI: 10.3390/ijms23020625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.
Collapse
|
4
|
Sentek H, Klein D. Lung-Resident Mesenchymal Stem Cell Fates within Lung Cancer. Cancers (Basel) 2021; 13:cancers13184637. [PMID: 34572864 PMCID: PMC8472774 DOI: 10.3390/cancers13184637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer remains the leading cause of cancer-related deaths worldwide. Herein, the heterogeneous tumor stroma decisively impacts on tumor progression, therapy resistance, and, thus, poor clinical outcome. Among the numerous non-epithelial cells constructing the complex environment of lung carcinomas, mesenchymal stem cells (MSC) gained attraction being stromal precursor cells that could be recruited and ‘educated’ by lung cancer cells to adopt a tumor-associated MSC phenotype, serve as source for activated fibroblasts and presumably for vascular mural cells finally reinforcing tumor progression. Lung-resident MSCs should be considered as ‘local MSCs in stand by’ ready to be arranged within the cancer stroma. Abstract Lung-resident mesenchymal stem cells (LR-MSCs) are non-hematopoietic multipotent stromal cells that predominately reside adventitial within lung blood vessels. Based on their self-renewal and differentiation properties, LR-MSCs turned out to be important regulators of normal lung homeostasis. LR-MSCs exert beneficial effects mainly by local secretion of various growth factors and cytokines that in turn foster pulmonary regeneration including suppression of inflammation. At the same time, MSCs derived from various tissues of origins represent the first choice of cells for cell-based therapeutic applications in clinical medicine. Particularly for various acute as well as chronic lung diseases, the therapeutic applications of exogenous MSCs were shown to mediate beneficial effects, hereby improving lung function and survival. In contrast, endogenous MSCs of normal lungs seem not to be sufficient for lung tissue protection or repair following a pathological trigger; LR-MSCs could even contribute to initiation and/or progression of lung diseases, particularly lung cancer because of their inherent tropism to migrate towards primary tumors and metastatic sites. However, the role of endogenous LR-MSCs to be multipotent tumor-associated (stromal) precursors remains to be unraveled. Here, we summarize the recent knowledge how ‘cancer-educated’ LR-MSCs impact on lung cancer with a focus on mesenchymal stem cell fates.
Collapse
Affiliation(s)
| | - Diana Klein
- Correspondence: ; Tel.: +49-(0)-201-7238-3342
| |
Collapse
|
5
|
Seban RD, Assié JB, Giroux-Leprieur E, Massiani MA, Bonardel G, Chouaid C, Deleval N, Richard C, Mezquita L, Girard N, Champion L. Prognostic value of inflammatory response biomarkers using peripheral blood and [18F]-FDG PET/CT in advanced NSCLC patients treated with first-line chemo- or immunotherapy. Lung Cancer 2021; 159:45-55. [PMID: 34311344 DOI: 10.1016/j.lungcan.2021.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We aimed to compare the prognostic value of inflammatory biomarkers extracted from pretreatment peripheral blood and [18F]-FDG PET for estimating outcomes in non-small cell lung cancer (NSCLC) patients treated with first-line immunotherapy (IT) or chemotherapy (CT). MATERIALS AND METHODS In this retrospective multicenter study, we evaluated 111 patients with advanced NSCLC who underwent baseline [18F]-FDG PET/CT before IT or CT between 2016 and 2019. Several blood inflammatory indices were evaluated: derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP) and systemic immune-inflammation index (SII). FDG-PET inflammatory parameters were extracted from lymphoid tissues (BLR and SLR: bone marrow or spleen-to-Liver SUVmax ratios). Association with survival and relationships between parameters were evaluated using Cox prediction models and Spearman's correlation respectively. RESULTS Overall, 90 patients were included (IT:CT) (51:39pts). Median PFS was 8.6:6.6 months and median OS was not reached:21.2 months. In the IT cohort, high dNLR (>3), high SII (≥1,270) and high SLR (0.77) were independent statistically significant prognostic factors for one-year progression-free survival (1y-PFS) and two-year overall survival (2y-OS) on multivariable analysis. In the CT cohort, high BLR (≥0.80) and high dNLR (>3) were associated with shorter 1y-PFS (HR 2.2, 95% CI 1.0-4.9) and 2y-OS (HR 3.4, 95CI 1.1-10.3) respectively, on multivariable analysis. Finally, BLR significantly but moderately correlated with most blood-based inflammatory indices (CRP, PLR and SII) while SLR was only associated with CRP (p < 0.01 for all). CONCLUSION In advanced NSCLC patients undergoing first-line IT or CT, pretreatment blood and inflammatory factors evaluating the spleen or bone marrow on [18F]-FDG PET/CT provided prognostic information for 1y-PFS and 2y-OS. These biomarkers should be further evaluated for potential clinical application.
Collapse
Affiliation(s)
- Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France; Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France.
| | - Jean-Baptiste Assié
- Department of Pneumology, Paris-Est University, Centre Hospitalier Inter-Communal de Créteil, Inserm U955, UPEC, IMRB, équipe CEpiA, 94010 Créteil, France; Inserm, Centre de Recherche des Cordeliers, Sorbonne University, Université de Paris, Functionnal Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP, Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
| | | | - Gérald Bonardel
- Department of Nuclear Medicine, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Christos Chouaid
- Department of Pneumology, Paris-Est University, Centre Hospitalier Inter-Communal de Créteil, Inserm U955, UPEC, IMRB, équipe CEpiA, 94010 Créteil, France
| | - Nicolas Deleval
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
| | - Capucine Richard
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
| | - Laura Mezquita
- Department of Medical Oncology, Hospital Clínic, Laboratory of Translational Genomics and Target Therapeutics in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, F-75006 Paris, France
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France; Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France
| |
Collapse
|
6
|
Steens J, Klar L, Hansel C, Slama A, Hager T, Jendrossek V, Aigner C, Klein D. The vascular nature of lung-resident mesenchymal stem cells. Stem Cells Transl Med 2020; 10:128-143. [PMID: 32830458 PMCID: PMC7780817 DOI: 10.1002/sctm.20-0191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Human lungs bear their own reservoir of endogenous mesenchymal stem cells (MSCs). Although described as located perivascular, the cellular identity of primary lung MSCs remains elusive. Here we investigated the vascular nature of lung‐resident MSCs (LR‐MSCs) using healthy human lung tissue. LR‐MSCs predominately reside within the vascular stem cell niche, the so‐called vasculogenic zone of adult lung arteries. Primary LR‐MSCs isolated from normal human lung tissue showed typical MSC characteristics in vitro and were phenotypically and functionally indistinguishable from MSCs derived from the vascular wall of adult human blood vessels (VW‐MSCs). Moreover, LR‐MSCs expressed the VW‐MSC‐specific HOX code a characteristic to discriminate VW‐MSCs from phenotypical similar cells. Thus, LR‐MSC should be considered as VW‐MSCs. Immunofluorescent analyses of non‐small lung cancer (NSCLC) specimen further confirmed the vascular adventitia as stem cell niche for LR‐MSCs, and revealed their mobilization and activation in NSCLC progression. These findings have implications for understanding the role of MSC in normal lung physiology and pulmonary diseases, as well as for the rational design of additional therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Lea Klar
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christine Hansel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Alexis Slama
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|