1
|
González-Contreras C, Martorell M, Ulloa N, Ochoa-Rosales C, Díaz-Toro F, Petermann-Rocha F, Celis-Morales C, Villagran M, Mardones L. Association between the rs12654778 SNP of the β-2 adrenergic receptor and LDL cholesterol levels in the Chilean adult population. ENDOCRINOL DIAB NUTR 2024; 71:397-404. [PMID: 39608965 DOI: 10.1016/j.endien.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/27/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Various polymorphisms in the beta-2 adrenergic receptor (ADRB2) gene have been associated with cardiometabolic risk factors, such as hypertension, dyslipidemia, type 2 diabetes mellitus and obesity contributing to the physiopathology of these chronic conditions. However, the association of the single nucleotide polymorphism (SNP) rs12654778 at the ADRB2 gene with metabolic changes has been poorly studied and there is no information on the Chilean adult population. OBJECTIVE To investigate the association between the rs12654778 SNP at the ADRB2 gene with cardiometabolic risk markers in a Chilean adult population. METHODS We conducted a cross-sectional study including 404 participants from the GENADIO study whom were genotyped for rs12654778 and categorized into GG, AG, and AA genotypes. Associations with cardiometabolic risk markers, such as blood pressure, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, blood glucose and insulin were examined using multivariate regression analysis, while statistical models were adjusted for sociodemographic and lifestyle variables. RESULTS Our findings indicate a significant association between the presence of the protective genotype (AA) of the rs12654778 polymorphism and lower low-density lipoprotein cholesterol levels corresponding to 8.75mg/dL per each copy of the protective allele (maximally adjusted model). No significant associations were seen for the remaining variables. CONCLUSION The AA genotype of the rs12654778 SNP at the ADRB2 gene had a protective effect specifically against low-density lipoprotein cholesterol levels. This is the first study ever conducted in Chile on this SNP of ADRB2 and one of the few conducted worldwide to establish an association between the rs12654778 SNP at the ADRB2 gene and LDL cholesterol.
Collapse
Affiliation(s)
- Carlos González-Contreras
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile; Centre for Healthy Living, Universidad de Concepción, Chile
| | - Natalia Ulloa
- Centre for Healthy Living, Universidad de Concepción, Chile; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Carolina Ochoa-Rosales
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicine, Universidad Diego Portales, Santiago, Chile
| | - Carlos Celis-Morales
- Human Performance Lab, Education, Physical Activity and Health Research Unit, Universidad Católica del Maule, Talca, Chile; Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Marcelo Villagran
- Centre of Biodiversity and Sustainable Environments (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Lorena Mardones
- Centre of Biodiversity and Sustainable Environments (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Odnoshivkina JG, Averin AS, Khakimov IR, Trusov NA, Trusova DA, Petrov AM. The mechanism of 25-hydroxycholesterol-mediated suppression of atrial β1-adrenergic responses. Pflugers Arch 2024; 476:407-421. [PMID: 38253680 DOI: 10.1007/s00424-024-02913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac β-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to β-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the β-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to β1-AR (but not β2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the β1-AR-mediated responses was prevented by selective β3-AR antagonists as well as inhibitors of Gi protein, Gβγ, G protein-coupled receptor kinase 2/3, or β-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to β-AR activation. Thus, 25HC can suppress the β1-AR-dependent effects via engaging β3-AR, Gi protein, Gβγ, G protein-coupled receptor kinase, and β-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial β-adrenergic signaling.
Collapse
Affiliation(s)
- Julia G Odnoshivkina
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Alexey S Averin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center of Biological Research", Pushchino Branch, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Ildar R Khakimov
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
| | - Nazar A Trusov
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
| | - Diliara A Trusova
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012.
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111.
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008.
| |
Collapse
|
3
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
4
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X, Peng X. Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: emerging role in immune cells and immunosuppressive signaling. Cell Biosci 2023; 13:189. [PMID: 37828561 PMCID: PMC10571292 DOI: 10.1186/s13578-023-01138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhigong Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Keliang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Odnoshivkina UG, Petrov AM. Immune Oxysterol Downregulates the Atrial Inotropic Response to β-Adrenergic Receptor Stimulation: The Role of Liver X Receptors and Lipid Raft Stability. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Zakyrjanova GF, Tsentsevitsky AN, Kuznetsova EA, Petrov AM. Immune-related oxysterol modulates neuromuscular transmission via non-genomic liver X receptor-dependent mechanism. Free Radic Biol Med 2021; 174:121-134. [PMID: 34391813 DOI: 10.1016/j.freeradbiomed.2021.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory reactions induce changes in the neuromuscular system. The mechanisms underlying this link are unclear. Besides cytokines and reactive oxygen species (ROS), production of an antiviral oxysterol 25-hydroxycholesterol (25HC) by immune cells is quickly increased in response to inflammation. Hypothetically, 25HC could contribute to regulation of neuromuscular activity as well as redox status. We found that 25HC (0.01-10 μM) can bidirectionally modulate neurotransmission in mice diaphragm, the main respiratory muscle. Low concentrations (≤0.1 μM) of 25HC reduced involvement of synaptic vesicles (SVs) into exocytosis during 20-Hz activity, whereas higher inflammatory-related concentrations (≥1 μM) had a profound potentiating effect on SV mobilization. The latter stimulatory action of 25HC was accompanied by increase in Ca2+ release from intracellular stores via IP3 receptors. Both increase in SV mobilization and [Ca2+]in were suppressed by a specific antagonist of liver X receptors (LXRs). These receptors formed clusters within the synaptic membranes in a lipid raft-dependent manner. Either raft disruption or intracellular Ca2+ chelation prevented 25HC-mediated acceleration of the exocytotic rate. The same action had inhibition of estrogen receptor α, Gi-protein, Gβγ, phospholipase C and protein kinase C. Additionally, 1 μM 25HC upregulated ROS production in a Ca2+-dependent way and an antioxidant partially decreased the exocytosis-promoting effect of 25HC. Thus, 25HC has prooxidant properties and it is a potent regulator of SV mobilization via activation of lipid raft-associated LXRs which can trigger signaling via estrogen receptor α - Gi-protein - Gβγ - phospholipase C - Ca2+ - protein kinase C pathway. 25HC-mediated increase in ROS may modulate this signaling.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
7
|
de Freitas FA, Levy D, Zarrouk A, Lizard G, Bydlowski SP. Impact of Oxysterols on Cell Death, Proliferation, and Differentiation Induction: Current Status. Cells 2021; 10:cells10092301. [PMID: 34571949 PMCID: PMC8468221 DOI: 10.3390/cells10092301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol produced by enzymatic activity or non-enzymatic pathways (auto-oxidation). The oxidation processes lead to the synthesis of about 60 different oxysterols. Several oxysterols have physiological, pathophysiological, and pharmacological activities. The effects of oxysterols on cell death processes, especially apoptosis, autophagy, necrosis, and oxiapoptophagy, as well as their action on cell proliferation, are reviewed here. These effects, also observed in several cancer cell lines, could potentially be useful in cancer treatment. The effects of oxysterols on cell differentiation are also described. Among them, the properties of stimulating the osteogenic differentiation of mesenchymal stem cells while inhibiting adipogenic differentiation may be useful in regenerative medicine.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Amira Zarrouk
- Faculty of Medicine, University of Monastir, LR12ES05, Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Monastir, Tunisia & Faculty of Medicine, University of Sousse, Sousse 5000, Tunisia;
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA, University of Bourgogne Franche-Comté, Institut National de la Santé et de la Recherche Médicale—Inserm, 7270 Dijon, France;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
8
|
Odnoshivkina YG, Petrov AM. The Role of Neuro-Cardiac Junctions
in Sympathetic Regulation of the Heart. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|