1
|
Yang C, Liu YH, Zheng HK. Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis. Sci Rep 2024; 14:25283. [PMID: 39455660 PMCID: PMC11511845 DOI: 10.1038/s41598-024-76514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease with a poor prognosis, and metabolic abnormalities play a critical role in its development. This study used metabolomics, machine learning algorithms and bioinformatics to screen for potential metabolic biomarkers associated with the diagnosis of PAH. In this study, plasma samples were collected from 17 patients diagnosed with idiopathic pulmonary arterial hypertension (IPAH) and 20 healthy controls. Plasma metabolomic profiling was performed by high-performance liquid chromatography-mass spectrometry. Gene profiles of PAH patients were obtained from the GEO database. Key differentially expressed metabolites (DEMs) and metabolism-related genes were subsequently identified using machine learning algorithms. Twenty differential plasma metabolites associated with IPAH were identified (VIP score > 1 and p < 0 0.05), and enrichment analysis revealed the arginine biosynthesis pathway as the most altered pathway. Using machine learning models, including least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM), we extracted key metabolites that correlated with clinical phenotypes. Our results suggested that five metabolites, kynurenine, homoserine, tryptophan, AMP, and spermine, are potential biomarkers for IPAH. Bioinformatics analysis also identified 3 metabolism-related genes, MAPK6, SLC7A11 and CDC42BPA, that are strongly correlated with pulmonary hypertension, demonstrating strong predictive power and clinical relevance. Our findings revealed some key genes associated with metabolism in PH, and provided crucial information about complex metabolic reprogramming signals and may lead to the identification of useful metabolic biomarkers for the diagnosis of PAH.
Collapse
Affiliation(s)
- Chuang Yang
- Department of cardiology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Yi-Hang Liu
- Department of cardiology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Hai-Kuo Zheng
- Department of cardiology, China-Japan Union Hospital of Jilin University, No.126, Xiantan Street, Changchun, 130033, China.
| |
Collapse
|
2
|
Kushwaha A, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone mediates Ca +2 dysregulation, mitochondrial dysfunction, and apoptosis in human peripheral blood lymphocytes. Heliyon 2023; 9:e21462. [PMID: 38027911 PMCID: PMC10660034 DOI: 10.1016/j.heliyon.2023.e21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 μM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
3
|
Deng Z, Lin B, Liu F, Zhao W. Role of Enterococcus faecalis in refractory apical periodontitis: from pathogenicity to host cell response. J Oral Microbiol 2023; 15:2184924. [PMID: 36891193 PMCID: PMC9987735 DOI: 10.1080/20002297.2023.2184924] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Refractory apical periodontitis (RAP) is an oral infectious disease characterised by persistent inflammation, progressive alveolar bone destruction, and delayed bone healing. RAP has received increasing attention, because it cannot be cured after repeated root canal therapies. The aetiology of RAP is related to the complex interplay between the pathogen and its host. However, the exact pathogenesis of RAP remains unclarified and includes several factors, such as microorganism immunogenicity, host immunity and inflammation, and tissue destruction and repair. Enterococcus faecalis is the dominant pathogen involved in RAP, and has evolved multiple strategies to ensure survival, which cause persistent intraradicular and extraradicular infections. OBJECTIVE To review the crucial role of E. faecalis in the pathogenesis of RAP, and open new avenues for prevention and treatment of RAP. METHODS The PubMed and Web of Science databases were searched for pertinent publications, employing the search terms "Enterococcus faecalis", "refractory apical periodontitis", "persistent periapical periodontitis", "pathogenicity", "virulence", "biofilm formation", "dentine tubule", "immune cell", "macrophage", and "osteoblast". RESULTS AND CONCLUSION Besides its high pathogenicity due to various virulence mechanisms, E. faecalis modulates the macrophage and osteoblast responses, including regulated cell death, cell polarisation, cell differentiation, and inflammatory response. An in-depth understanding of the multifaceted host cell responses modulated by E. faecalis will help to design potential future therapeutic strategies and overcome the challenges of sustained infection and delayed tissue healing in RAP.
Collapse
Affiliation(s)
- Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Fan Liu
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Kushwaha A, Verma RS, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone induces calcium signaling-dependent crosstalk between autophagy and apoptosis in human macrophages. Cell Signal 2022; 99:110441. [PMID: 35995303 DOI: 10.1016/j.cellsig.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
N-(3-oxododecanoyl) homoserine lactone (3oc) is a Pseudomonas aeruginosa secreted quorum-sensing signal molecule playing a crucial role in regulating quorum-sensing (QS) dependent biofilm formation and secretion of virulence factors. In addition to regulating quorum sensing, 3oc also plays an immunomodulatory role in the host by triggering regulated cell death in immune cells. The molecular mechanisms of 3oc in modulating macrophage pathologies are still unclear. In this study, we hypothesized the novel 3oc mediated crosstalk between autophagy and apoptosis at the interphase of calcium signaling in human macrophages. The study showed that 3oc induces mitochondrial dysfunction and apoptosis in macrophages through elevating cytosolic Ca+2 ([Ca+2]cyt) levels. Pre-treatment with the calcium-specific chelator BAPTA-AM effectively abrogated 3oc-induced apoptotic events, like mitochondrial ROS generation (mROS), mitochondrial membrane potential (MMP) drop, and phosphatidylserine (PS) exposure. The study also showed that 3oc induces autophagy, as assessed by the accumulation of autophagic vacuoles, induction of lysosomal biogenesis, upregulation of autophagy genes (LC3, BECLIN 1, STX17, PINK1, and TFEB), autophagosomes formation, and LC3 lipidation. Mechanistically, our study proved that 3oc-induced autophagy was [Ca+2]cyt dependent as BAPTA-AM pre-treatment reduced autophagosome formation. Furthermore, inhibiting autophagy with chloroquine attenuated 3oc-induced apoptosis, while autophagy induction with rapamycin aggravated cell death, suggesting autophagy plays a role in cell death in 3oc-treated macrophages. In conclusion, our findings indicate that 3oc activates a multifaceted death signaling by activating autophagy and apoptosis through Ca+2 signaling, and we propose pharmacological modulation of Ca+2 signaling may act as a combinatorial therapeutic intervention in patients with Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India.
| |
Collapse
|
5
|
Weng Y, Wang Z, Fukuhara Y, Tanai A, Ikegame M, Yamada D, Takarada T, Izawa T, Hayano S, Yoshida K, Kamioka H, Okamura H. O-GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics-oriented study. Biofactors 2021; 47:992-1015. [PMID: 34418170 DOI: 10.1002/biof.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.
Collapse
Affiliation(s)
- Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoko Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|