1
|
Zou M, Lin M, Hu KL, Li R. Cross-Tissue Regulatory Network Analyses Reveal Novel Susceptibility Genes and Potential Mechanisms for Endometriosis. BIOLOGY 2024; 13:871. [PMID: 39596826 PMCID: PMC11591882 DOI: 10.3390/biology13110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Endometriosis (EMT) is a common gynecological disease with a strong genetic component, while its precise etiology remains elusive. This study aims to integrate transcriptome-wide association study (TWAS), Mendelian randomization (MR), and bioinformatics analyses to reveal novel putatively causal genes and potential mechanisms. We obtained summary-level data of the Genotype-Tissue Expression Project (GTEx), v8 expression quantitative loci (eQTL) data, and the genome-wide association study (GWAS) data of EMT and its subtypes from the R11 release results of the FinnGen consortium for analysis. GWAS data of modifiable risk factors were collected from IEU Open GWAS. Cross-tissue TWAS analyses were performed using the unified test for molecular signature (UTMOST), while functional summary-based imputation (FUSION) was employed for single-tissue TWAS analyses. Furthermore, we also conducted multi-marker analysis of genomic annotation (MAGMA) analyses to validate the significant associations. Subsequent Mendelian randomization (MR) and colocalization analysis elucidated the causal associations between the identified genes across various tissues and EMT. To further delve into mechanisms, two-sample network MR analyses were conducted. At last, bioinformatics analyses were employed to enhance our understanding of the functional implications and expression patterns of these identified genes. For EMT, 22 significant gene signals were identified by UTMOST, 615 by FUSION, and 354 by MAGMA. Ultimately, six genes, including CISD2, EFRB, GREB1, IMMT, SULT1E1, and UBE2D3, were identified as candidate susceptibility genes for EMT. Through similar procedures, we identified GREB1, IL1A, and SULT1E1 for EMT of the ovary, and we identified GREB1 for EMT of the pelvic peritoneum, EMT of rectovaginal septum and vagina, and deep EMT. In MR analyses, the expression of IMMT in 21 tissues, EFR3B in the adrenal gland, CISD2 in 17 tissues, and UBE2D3 in 7 tissues demonstrated causal relationships with EMT risk. In addition, CISD2, IMMT, and UBE2D3, across different tissues, exhibited strong colocalization with EMT (PPH4 > 0.7). Two-sample network MR analyses revealed that CISD2, EFR3B, and UBE2D3 could potentially regulate the levels of blood lipids and hip circumference so as to influence the risk of EMT. Furthermore, bioinformatics analyses confirmed our findings and delved into the biological functions of the identified genes. Our study unveiled seven novel candidate genes whose predicted expression was associated with the risk of EMT, providing new insights into the underlying genetic framework of EMT. These findings will facilitate a deeper comprehension of the tissue-specific transcriptional regulatory mechanisms associated with EMT, paving the way for optimizing the management and treatment of EMT.
Collapse
Affiliation(s)
- Mingrui Zou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (M.L.)
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking University First School of Clinical Medicine, Peking University First Hospital, Beijing 100034, China
| | - Mingmei Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (M.L.)
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (M.L.)
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (M.L.)
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
2
|
Bao J, Sun R, Pan Z, Wei S. UBE2D3 regulated by WTAP-mediated m6A modification inhibits temozolomide chemosensitivity in glioblastoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03327-w. [PMID: 39085511 DOI: 10.1007/s00210-024-03327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
To explore how the ubiquitin-conjugating enzyme E2D3 (UBE2D3) influences temozolomide (TMZ) resistance in glioblastoma (GBM), and to clarify the association between UBE2D3 and WTAP. The UBE2D3 protein expression in GBM tissues were detected using immunohistochemistry (IHC) through tissue microarrays. The potential pathways of UBE2D3 in TCGA-GBM were predicted via Gene Set Enrichment Analysis (GSEA). To investigate UBE2D3's role in TMZ resistance, GBM cells were transduced with UBE2D3 shRNA or overexpression lentivirus, followed by assessments of CCK-8, flow cytometry, comet assay, and western blot analysis. Furthermore, a subcutaneous tumor model was established in nude mice using U87 cells transduced with interfering lentivirus to observe tumor growth and assess cell apoptosis using TUNEL staining. Mechanically, m6A content analysis, m6A methylated RNA immunoprecipitation quantitative PCR, reporter gene assay, mRNA stability measurements, RNA immunoprecipitation, quantitative Real-Time PCR, and Western blot assays were carried out to verify the role of WTAP/IGF2BP1 in regulating UBE2D3 expression. UBE2D3 exhibited elevated expression levels in GBM tissues compared with normal brain tissues and was associated with the DNA repair signaling pathway. In both in vitro and in vivo studies, it was demonstrated that TMZ treatment combined with reduced UBE2D3 expression further suppressed U87 cell viability and tumor growth, with a notable increase in apoptosis rate and DNA damage. Conversely, the overexpression of UBE2D3 had the opposite impact. Furthermore, our findings revealed that WTAP promotes the m6A modification of UBE2D3 via an IGF2BP1-dependent mechanism. The WTAP-IGF2BP1 axis regulates UBE2D3 stability in an m6A-dependent manner, influencing tumor malignancy and TMZ chemosensitivity in GBM via the DNA repair signaling pathway.
Collapse
Affiliation(s)
- Jing Bao
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Rui Sun
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
3
|
Yang M, Wang Y, He L, Shi X, Huang S. Comprehensive bioinformatics analysis reveals the role of cuproptosis-related gene Ube2d3 in myocardial infarction. Front Immunol 2024; 15:1353111. [PMID: 38440726 PMCID: PMC10909922 DOI: 10.3389/fimmu.2024.1353111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Myocardial infarction (MI) caused by severe coronary artery disease has high incidence and mortality rates, making its prevention and treatment a central and challenging aspect of clinical work for cardiovascular practitioners. Recently, researchers have turned their attention to a novel mechanism of cell death caused by Cu2+, cuproptosis. Methods This study integrated data from three MI-related bulk datasets downloaded from the Gene Expression Omnibus (GEO) database, and identified 16 differentially expressed genes (DEGs) related to cuproptosis by taking intersection of the 6378 DEGs obtained by differential analysis with 49 cuproptosis-related genes. Four hub genes, Dbt, Dlat, Ube2d1 and Ube2d3, were screened out through random forest analysis and Lasso analysis. In the disease group, Dbt, Dlat, and Ube2d1 showed low expression, while Ube2d3 exhibited high expression. Results Focusing on Ube2d3 for subsequent functional studies, we confirmed its high expression in the MI group through qRT-PCR and Western Blot detection after successful construction of a MI mouse model by left anterior descending (LAD) coronary artery ligation, and further clarified the correlation of cuproptosis with MI development by detecting the levels of cuproptosis-related proteins. Moreover, through in vitro experiments, Ube2d3 was confirmed to be highly expressed in oxygen-glucose deprivation (OGD)-treated cardiomyocytes AC16. In order to further clarify the role of Ube2d3, we knocked down Ube2d3 expression in OGD-treated AC16 cells, and confirmed Ube2d3's promoting role in the hypoxia damage of AC16 cells by inducing cuproptosis, as evidenced by the detection of MTT, TUNEL, LDH release and cuproptosis-related proteins. Conclusion In summary, our findings indicate that Ube2d3 regulates cuproptosis to affect the progression of MI.
Collapse
Affiliation(s)
- Ming Yang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinxin Shi
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| |
Collapse
|
4
|
Zeng M, Wei X, He YL, Chen JX, Lin WT. TFAP2C inhibits cell autophagy to alleviate myocardial ischemia/reperfusion injury by regulating miR-23a-5p/SFRP5/Wnt5a axis. FASEB J 2023; 37:e22959. [PMID: 37191968 DOI: 10.1096/fj.202201962r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury contributes to severe injury for cardiomyocytes. In this study, we aimed to explore the underlying mechanism of TFAP2C on cell autophagy in MI/R injury. MTT assay measured cell viability. The cells injury was evaluated by commercial kits. IF detected the level of LC3B. Dual luciferase reporter gene assay, ChIP or RIP assay were performed to verify the interactions between crucial molecules. We found that TFAP2C and SFRP5 expression were decreased while miR-23a-5p and Wnt5a increased in AC16 cells in response to H/R condition. H/R induction led to cell injury and induced autophagy, which were reversed by TFAP2C overexpression or 3-MA treatment (an autophagy inhibitor). Mechanistically, TFAP2C suppressed miR-23a expression through binding to miR-23a promoter, and SFRP5 was a target gene of miR-23a-5p. Moreover, miR-23a-5p overexpression or rapamycin reversed the protective impacts of TFAP2C overexpression on cells injury and autophagy upon H/R condition. In conclusion, TFAP2C inhibited autophagy to improve H/R-induced cells injury by mediating miR-23a-5p/SFRP5/Wnt5a axis.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Yang-Li He
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Ji-Xiong Chen
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Wen-Ting Lin
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
5
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Ischemic Postconditioning Protects against Aged Myocardial Ischemia/Reperfusion Injury by Transcriptional and Epigenetic Regulation of miR-181a-2-3p. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9635674. [PMID: 35656020 PMCID: PMC9155916 DOI: 10.1155/2022/9635674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Ischemic postconditioning (IPostC) has been proposed as a strategy to mitigate the risk of ischemia/reperfusion (I/R) injury, and autophagy is involved in I/R-induced aged myocardial injury, while the underlying mechanism of IPostC-regulated autophagy is unknown. Here, we implemented miRNA sequencing analysis in aged cardiomyocytes to identify a novel miR-181a-2-3p after HPostC, which inhibits autophagy by targeting AMBRA1 in aged myocardium to protect I/R-induced aged myocardial injury. Mechanistically, we identified that IPostC can induce DNA hypomethylation and H3K14 hyperacetylation of miR-181a-2-3p promoter due to the decreased binding of DNMT3b and HDAC2 at its promoter, which contributes to enhancing the expression of miR-181a-2-3p. More importantly, cooperation of DNMT3b and HDAC2 inhibits the binding of c-Myc at the miR-181a-2-3p promoter in aged cardiomyocytes. In summary, IPostC attenuates I/R-induced aged myocardial injury through upregulating miR-181a-2-3p expression, which is an attribute to transcriptional and epigenetic regulation of its promoter. Our data indicate that miR-181a-2-3p may be a potential therapeutic target against I/R injury in aged myocardium.
Collapse
|
7
|
Liu S, Lu Y, Geng D. Molecular Subgroup Classification in Alzheimer's Disease by Transcriptomic Profiles. J Mol Neurosci 2022; 72:866-879. [PMID: 35080766 DOI: 10.1007/s12031-021-01957-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive cognitive disorder that occurs worldwide, and the lack of disease-modifying targets and pathways is a pressing issue. This study aimed to provide new targets and pathways by performing molecular subgroup classification. After normalizing the collected data, the subgroup number was confirmed with consensus clustering. Comparisons of clinical features among subgroups were conducted to clarify the clinical traits of each subgroup. Subgroup-specific genes were identified to perform weighted gene coexpression analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out. Next, gene set enrichment analysis (GSEA) was performed. Protein-protein interaction networks were built to screen core genes and in each subgroup to perform Spearman correlation analysis with clinical traits. Sequencing profiles of 1068 AD samples collected from 2 datasets were classified into 3 subgroups. Clinical comparisons revealed that patients in subgroup III tended to be younger, while their pathological grades were the most severe. WGCNA detected four gene modules, and the turquoise module, where the dopaminergic synapse pathway was enriched, was related to subgroup I. The neurotrophin signaling pathway and TGF-beta signaling pathway were robustly enriched in the blue and brown modules, respectively, in subgroup III. Moreover, 3 hub genes in subgroup I were negatively correlated with the sum of neurofibrillary tangle (Nft) density. Conversely, hub genes in subgroups II and III exhibited positive correlations with the sum of Nft density. These results provide new pathways and targets for AD treatment.
Collapse
Affiliation(s)
- Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, West Huaihai Road 99, Xuzhou, 221002, Jiangsu, China
| | - Yan Lu
- Department of Neurology, The Municipal Hospital, Xuzhou Medical University, Xuzhou, 221116, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, West Huaihai Road 99, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|