1
|
Chen M, Fu Z, Wu C. Tumor-derived exosomal ICAM1 promotes bone metastasis of triple-negative breast cancer by inducing CD8+ T cell exhaustion. Int J Biochem Cell Biol 2024; 175:106637. [PMID: 39147124 DOI: 10.1016/j.biocel.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Exosomes, which are nanosized extracellular vesicles, have emerged as crucial mediators of the crosstalk between tumor cells and the immune system. Intercellular adhesion molecule 1 (ICAM1) plays a crucial role in multiple immune functions as well as in the occurrence, development and metastasis of cancer. As a glycoprotein expressed on the cell membrane, ICAM1 is secreted extracellularly on exosomes and regulates the immunosuppressive microenvironment. However, the role of exosomal ICAM1 in the immune microenvironment of breast cancer bone metastases remains unclear. This study aimed to elucidated the role of exosomal ICAM1 in facilitating CD8+ T cell exhaustion and subsequent bone metastasis in triple-negative breast cancer (TNBC). We demonstrated that TNBC cells release ICAM1-enriched exosomes, and the binding of ICAM1 to its receptor is necessary for the suppressive effect of CD8 T cell proliferation and function. This pivotal engagement not only inhibits CD8+ T cell proliferation and activation but also initiates the development of an immunosuppressive microenvironment that is conducive to TNBC tumor growth and bone metastasis. Moreover, ICAM1 blockade significantly impairs the ability of tumor exosomes to bind to CD8+ T cells, thereby inhibiting their immunosuppressive effects. The present study elucidates the complex interaction between primary tumors and the immune system that is mediated by exosomes and provides a foundation for the development of novel cancer immunotherapies that target ICAM1 with the aim of mitigating TNBC bone metastasis.
Collapse
Affiliation(s)
- Mingcang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Metabolic Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yang C, Ni B, Shen L, Li Z, Zhou L, Wu H, Zhang Y, Liu L, Liu J, Tian L, Yan L, Jin X. Systematic pan-cancer analysis insights into ICAM1 as an immunological and prognostic biomarker. FASEB J 2024; 38:e23802. [PMID: 38979944 DOI: 10.1096/fj.202302176r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.
Collapse
Affiliation(s)
- Chunjiao Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Bingqiang Ni
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Zhenlong Li
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Lu Zhou
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Huayun Wu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ling Liu
- Benxi Central Hospital, Benxi, China
| | - Jiao Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | | | - Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xin Jin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
3
|
Huertas-Lárez R, Muñoz-Moreno L, Recio-Aldavero J, Román ID, Arenas MI, Blasco A, Sanchís-Bonet Á, Bajo AM. Induction of more aggressive tumoral phenotypes in LNCaP and PC3 cells by serum exosomes from prostate cancer patients. Int J Cancer 2023; 153:1829-1841. [PMID: 37526104 DOI: 10.1002/ijc.34673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Prostate cancer (PCa) is the second most frequent and sixth most fatal cancer in men worldwide. Despite its high prevalence, our understanding of its etiology and the molecular mechanisms involved in the progression of the disease is substantially limited. In recent years, the potential participation of exosomes in this process has been suggested. Therefore, we aim to study the effect of exosomes isolated from the serum of patients with PCa on various cellular processes associated with increased tumor aggressiveness in two PCa cell lines: LNCaP-FGC and PC3. The exosomes were isolated by filtration wand ultracentrifugation. Their presence was confirmed by immunodetection of specific markers and their size distribution was analyzed by Dynamic Light Scattering (DLS). The results obtained demonstrated that serum exosomes from PCa patients increased migration of PC3 cells and neuroendocrine differentiation of LNCaP-FGC cells regardless of the grade of the tumor. PCa serum exosomes also enhanced the secretion of enzymes related to invasiveness and resistance to chemotherapeutics, such as extracellular matrix metalloproteases 2 and 9, and gamma-glutamyltransferase in both cell lines. Altogether, these findings support the pivotal participation of exosomes released by tumoral cells in the progression of PCa. Future studies on the molecular mechanisms involved in the observed changes could provide crucial information on this disease and help in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Raquel Huertas-Lárez
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Laura Muñoz-Moreno
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Jorge Recio-Aldavero
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Irene Dolores Román
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - María Isabel Arenas
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| | - Ana Blasco
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario Príncipe de Asturias, Carretera de Alcalá Meco s/n, Alcalá de Henares, Madrid, Spain
| | - Ángeles Sanchís-Bonet
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Servicio de Urología, Hospital Universitario Príncipe de Asturias, Carretera de Alcalá Meco s/n, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Grupo de Investigación Cánceres de Origen Epitelial, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Campus Científico-Tecnológico, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Li W, Zhao C, Li W, Gong Y, Ma K, Lu Y, Liu X, Zhang L, Guo F. BRAF D594A mutation defines a unique biological and immuno-modulatory subgroup associated with functional CD8 + T cell infiltration in colorectal cancer. J Transl Med 2023; 21:737. [PMID: 37853469 PMCID: PMC10585750 DOI: 10.1186/s12967-023-04606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND BRAF non-V600 mutation occupies a relatively small but critical subset in colorectal cancer (CRC). However, little is known about the biological functions and impacts of BRAF class III mutation in CRC. Here, we aim to explore how D594A mutation impacts on biological behaviors and immune related signatures in murine CRC cells. METHODS BRAF V600E (class I), G469V (class II) and D594A (class III) mutant cell lines were established based on MC38 cells. The biological behaviors of cells were evaluated in respect of cell growth, cell proliferation, cell apoptosis, cell migration and invasion by the methods of colony-forming assay, CCK-8 assay, Annexin V/PI staining and transwell assay. The concentrations of soluble cytokines were detected by ELISA. The membrane expression of immuno-modulatory molecules and the pattern of tumor infiltrating lymphocyte were evaluated by flow cytometry. The molecular mechanism was explored by RNA sequencing. Immunohistochemistry (IHC) staining was used for the detection of CD8α in tumor tissues. qRT-PCR and western blot were performed to assess the mRNA and protein expression. Anti-PD-L1 treatment and cytokines neutralization experiments were conducted in in vivo models. RESULTS D594A mutant cells displayed lower grade malignancy characteristics than V600E (class I) and G469V (class II) mutant cells. Meanwhile, D594A mutation led to evident immuno-modulatory features including upregulation of MHC Class I and PD-L1. In vivo experiments displayed that the frequency of infiltrated CD8+ T cells was significantly high within D594A mutant tumors, which may provide potential response to anti-PD-L1 therapy. RNA sequencing analysis showed that D594A mutation led to enhanced expression of ATF3 and THBS1, which thus facilitated CXCL9 and CXCL10 production upon IFN-γ treatment. In addition, CXCL9 or CXCL10 neutralization reduced the infiltration of CD8+ T cells into THBS1-overexpressing tumors. CONCLUSIONS D594A mutant CRC exhibited lower aggressiveness and immune-activated phenotype. ATF3-THBS1-CXCL9/CXCL10 axis mediated functional CD8+ T cells infiltration into the microenvironment of D594A mutant CRC. Our present study is helpful to define this mutation in CRC and provide important insights in designing effective immunotherapeutic strategies in clinic.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215168, Jiangsu, China
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Chenyi Zhao
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, Jiangsu, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Yang Gong
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, Jiangsu, China
| | - Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Yujie Lu
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, Jiangsu, China
| | - Xiaowei Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Feng Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, Jiangsu, China.
| |
Collapse
|
5
|
Kamashev D, Shaban N, Lebedev T, Prassolov V, Suntsova M, Raevskiy M, Gaifullin N, Sekacheva M, Garazha A, Poddubskaya E, Sorokin M, Buzdin A. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023; 12:2022. [PMID: 37626832 PMCID: PMC10453612 DOI: 10.3390/cells12162022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Dmitri Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Andrew Garazha
- Oncobox Ltd., Moscow 121205, Russia;
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Maksim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
6
|
Wu J, Yu X, Zhu H, Chen P, Liu T, Yin R, Qiang Y, Xu L. RelB is a potential molecular biomarker for immunotherapy in human pan-cancer. Front Mol Biosci 2023; 10:1178446. [PMID: 37388242 PMCID: PMC10303125 DOI: 10.3389/fmolb.2023.1178446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: The nuclear factor kB (NF-κB) pathway emerges as a critical regulator of immune responses and is often dysregulated in human cancers. It consists of a family of transcription factors involved in many biological responses. Activated NF-κB subunits results in the nuclear translocation and activation of transcription, and the NF-κB pathway is known to influence the transcription of many genes. Noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Besides, NF-κB signaling had diverse and complicated roles in cancer with studies that NF-κB could both contribute to tumor promotion and suppression of oncogenesis relying on the cellular context. RelB, a member of noncanonical NF-κB was abnormally regulated in most cancer types, however the molecular features and clinical signature of RelB expression, as well as its role in cancer immunity in human pan-cancer remains to be elucidated. Methods: We used the open databases to explore RelB expression, clinical features and the association with tumor-infiltration cells in human pan-cancer. In this study, we investigated the aberration expression and prognostic significance of RelB, and the correlation with clinicopathological characters and immune cells infiltration in various cancers. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the mRNA expression level in different cancer types. Kaplan-Meier analysis and Cox regression were used to explore the prognostic significance of RelB in human pan-cancer. Then we took advantage of the TCGA database to analyze the relationship between RelB expression and DNA methylation, the infiltration of immune cells, immune checkpoint genes, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MSS). Results: Higher expression of RelB was significantly detected in human cancer tissues and a high level of RelB expression was significantly linked with a worse outcome in LGG, KIPAN, ACC, UVM, LUAD,THYM, GBM, LIHC and TGCT but associated with a favorable overall survival (OS) in SARC, SKCM and BRCA. According to the Human Protein Altas database, RelB was considered as an independent factor in breast cancer and renal cancer prognosis. GSEA results revealed that RelB was involved in many oncogenesisrelated processes and immunity-related pathways. RelB was significantly correlated with DNA methylation in 13 types of cancer. Meanwhile, RelB expression was associated with TMB in 5 types of cancer and MSI in 8 types of cancer. In the final, we analyzed the relationship between RelB expression and immune-infiltration cells in human pan-cancer, which suggested RelB could be a promising therapeutic target for cancer immunotherapy. Discussion: Our study further provided insights into a deeper understanding of RelB as a prognostic biomarker.
Collapse
Affiliation(s)
- Jintao Wu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinyu Yu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hongyu Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Peng Chen
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tongyan Liu
- Department of Science and Technology, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Science and Technology, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Qiang
- Department of Intensive Care Unit, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
7
|
Li H, Zeng C, Shu C, Cao Y, Shao W, Zhang M, Cao H, Zhao S. Laminins in tumor-derived exosomes upregulated by ETS1 reprogram omental macrophages to promote omental metastasis of ovarian cancer. Cell Death Dis 2022; 13:1028. [PMID: 36477408 PMCID: PMC9729302 DOI: 10.1038/s41419-022-05472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Tumor-derived exosomes participate in omental metastatic colonization of ovarian cancer by inducing an adaptive response in the tumor microenvironment. However, cell-cell communication via exosomes between primary tumor cells and the microenvironment of distant omentum and the mechanism of pre-metastatic niche formation are poorly understood. Here, we demonstrated that ETS1-overexpressing ovarian cancer cells secreted larger exosomes with higher laminin levels. In addition, ovarian cancer exosomes could be taken up by omental macrophages through integrin and laminin interaction. Compared with control exosomes, exosomes derived from ETS1-overexpressing ovarian cancer cells (LV-ETS1 Exos) stimulated the polarization of more macrophages toward the M2 phenotype (CD163 marker), as well as the production of more CXCL5 and CCL2 in macrophages, via integrin αvβ5/AKT/Sp1 signaling. In vivo experiments showed that LV-ETS1 Exos promoted omental metastasis of ovarian cancer by mediating the tumor-promoting effect of macrophages, which could be neutralized by integrin ανβ5 inhibitor cilengitide. These results indicated that ETS1 could drive ovarian cancer cells to release exosomes with higher laminin levels, thereby accelerating the exosome-mediated pro-metastatic effects of omental macrophages via the integrin αvβ5/AKT/Sp1 signaling pathway, and the integrin ανβ5 inhibitor cilengitide could inhibit omental metastasis of ovarian cancer driven by tumor-derived exosomes.
Collapse
Affiliation(s)
- Haiyang Li
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Cheng Zeng
- grid.89957.3a0000 0000 9255 8984General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Chang Shu
- grid.254147.10000 0000 9776 7793General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Yuanyuan Cao
- grid.89957.3a0000 0000 9255 8984General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Wengui Shao
- grid.254147.10000 0000 9776 7793General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Mengjie Zhang
- grid.254147.10000 0000 9776 7793General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Hongyong Cao
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Shuli Zhao
- grid.89957.3a0000 0000 9255 8984General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China ,grid.254147.10000 0000 9776 7793General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu China
| |
Collapse
|
8
|
Mejía-Hernández JO, Keam SP, Saleh R, Muntz F, Fox SB, Byrne D, Kogan A, Pang L, Huynh J, Litchfield C, Caramia F, Lozano G, He H, You JM, Sandhu S, Williams SG, Haupt Y, Haupt S. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis 2022; 13:777. [PMID: 36075907 PMCID: PMC9465983 DOI: 10.1038/s41419-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Telix Pharmaceuticals Ltd, Melbourne, VIC 3051 Australia
| | - Simon P. Keam
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1135.60000 0001 1512 2287Present Address: CSL Innovation, CSL Ltd, Melbourne, VIC 3052 Australia
| | - Reem Saleh
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Fenella Muntz
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Stephen B. Fox
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - David Byrne
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Arielle Kogan
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Lokman Pang
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Jennifer Huynh
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Cassandra Litchfield
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Franco Caramia
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Guillermina Lozano
- grid.240145.60000 0001 2291 4776Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA
| | - Hua He
- grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - James M. You
- grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Shahneen Sandhu
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000 Australia
| | - Scott G. Williams
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Ygal Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Vittail Ltd, Melbourne, VIC 3146 Australia
| | - Sue Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| |
Collapse
|
9
|
Harryman WL, Marr KD, Nagle RB, Cress AE. Integrins and Epithelial-Mesenchymal Cooperation in the Tumor Microenvironment of Muscle-Invasive Lethal Cancers. Front Cell Dev Biol 2022; 10:837585. [PMID: 35300411 PMCID: PMC8921537 DOI: 10.3389/fcell.2022.837585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle-invasive lethal carcinomas traverse into and through this specialized biophysical and growth factor enriched microenvironment. We will highlight cancers that originate in organs surrounded by smooth muscle, which presents a barrier to dissemination, including prostate, bladder, esophageal, gastric, and colorectal cancers. We propose that the heterogeneity of cell-cell and cell-ECM adhesion receptors is an important driver of aggressive tumor networks with functional consequences for progression. Phenotype heterogeneity of the tumor provides a biophysical advantage for tumor network invasion through the tensile muscle and survival of the tumor network. We hypothesize that a functional epithelial-mesenchymal cooperation (EMC)exists within the tumor invasive network to facilitate tumor escape from the primary organ, invasion and traversing of muscle, and navigation to metastatic sites. Cooperation between specific epithelial cells within the tumor and stromal (mesenchymal) cells interacting with the tumor is illustrated using the examples of laminin-binding adhesion molecules—especially integrins—and their response to growth and inflammatory factors in the tumor microenvironment. The cooperation between cell-cell (E-cadherin, CDH1) and cell-ECM (α6 integrin, CD49f) expression and growth factor receptors is highlighted within poorly differentiated human tumors associated with aggressive disease. Cancer-associated fibroblasts are examined for their role in the tumor microenvironment in generating and organizing various growth factors. Cellular structural proteins are potential utility markers for future spatial profiling studies. We also examine the special characteristics of the smooth muscle microenvironment and how invasion by a primary tumor can alter this environment and contribute to tumor escape via cooperation between epithelial and stromal cells. This cooperative state allows the heterogenous tumor clusters to be shaped by various growth factors, co-opt or evade immune system response, adapt from hypoxic to normoxic conditions, adjust to varying energy sources, and survive radiation and chemotherapeutic interventions. Understanding the epithelial-mesenchymal cooperation in early tumor invasive networks holds potential for both identifying early biomarkers of the aggressive transition and identification of novel agents to prevent the epithelial-mesenchymal cooperation phenotype. Epithelial-mesenchymal cooperation is likely to unveil new tumor subtypes to aid in selection of appropriate therapeutic strategies.
Collapse
Affiliation(s)
- William L Harryman
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States.,Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ray B Nagle
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|