1
|
Yue J, Fang H, Chen S, Gu L, Ren G. Causal role of blood metabolites in HER-positive and HER-negative breast cancer: a Mendelian randomization (MR) study. Aging (Albany NY) 2024; 16:11626-11655. [PMID: 39103210 PMCID: PMC11346783 DOI: 10.18632/aging.206042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Previous studies provide evidence that in vivo metabolites are associated with breast cancer (BC). However, the causal relationship between blood metabolites and BC remains unclear. METHOD Comprehensive two-sample Mendelian randomization analysis was conducted to determine the causal association between 1400 publicly available genetic data on metabolic factors and human epidermal growth factor receptor positive (HER+) BC or HER- BC in this study. RESULT Epiandrosterone sulfate levels (OR = 1.07, 95% CI = 1.02 ~ 1.10, p = 0.0013), 5alpha-androstan-3beta,17beta-diol monosulfate (2) levels (OR = 1.07, 95% CI = 1.03 ~ 1.12, p = 0.0012), glycohyocholate levels (OR = 0.85, 95% CI = 0.77 ~ 0.93, p = 0.0007) and etiocholanolone glucuronide levels (OR = 1.12, 95% CI = 1.05 ~ 1.20, p = 0.0013) were causally correlated with HER+ BC. 5 metabolites were causally correlated with HER- BC: Vanillic acid glycine levels (OR = 1.14, 95% CI = 1.06 ~ 1.22, p = 0.0003), Thyroxine levels (OR = 1.26, 95% CI = 1.11 ~ 1.44, p = 0.0004), 1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) levels (OR = 0.86, 95% CI = 0.79 ~ 0.94, p = 0.0010), N-acetylphenylalanine levels (OR = 1.12, 95% CI = 1.05 ~ 1.19, p = 0.0007) and Glucose-to-mannose ratio (OR = 1.15, 95% CI = 1.06 ~ 1.24, p = 0.0008). Two common causally related metabolites were identified: Gamma-glutamyl glutamate and X-12849 levels. CONCLUSIONS Our study has respectively demonstrated the connection between blood metabolites and HER+ or HER- BC by genetic means, thereby offering opportunities for therapeutic targets.
Collapse
Affiliation(s)
- Jian Yue
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Surgery, Gaozhou People’s Hospital, Gaozhou, China
| | - Huiying Fang
- Department of Breast Cancer Center, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Sheng Chen
- Department of Breast Surgery, Gaozhou People’s Hospital, Gaozhou, China
| | - Lei Gu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Albert V, Bruss C, Tümen D, Piendl G, Weber F, Dahl E, Seitz S, Ortmann O, Wege AK, Brockhoff G. HER4 Affects Sensitivity to Tamoxifen and Abemaciclib in Luminal Breast Cancer Cells and Restricts Tumor Growth in MCF-7-Based Humanized Tumor Mice. Int J Mol Sci 2024; 25:7475. [PMID: 39000582 PMCID: PMC11242770 DOI: 10.3390/ijms25137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of the HER4 receptor on the growth and treatment of estrogen receptor-positive breast cancer is widely uncertain. Using CRISPR/Cas9 technology, we generated stable HER4 knockout variants derived from the HER4-positive MCF-7, T-47D, and ZR-75-1 breast cancer cell lines. We investigated tumor cell proliferation as well as the cellular and molecular mechanisms of tamoxifen, abemaciclib, AMG232, and NRG1 treatments as a function of HER4 in vitro. HER4 differentially affects the cellular response to tamoxifen and abemaciclib treatment. Most conspicuous is the increased sensitivity of MCF-7 in vitro upon HER4 knockout and the inhibition of cell proliferation by NRG1. Additionally, we assessed tumor growth and immunological effects as responses to tamoxifen and abemaciclib therapy in humanized tumor mice (HTM) based on MCF-7 HER4-wildtype and the corresponding HER4-knockout cells. Without any treatment, the enhanced MCF-7 tumor growth in HTM upon HER4 knockout suggests a tumor-suppressive effect of HER4 under preclinical but human-like conditions. This phenomenon is associated with an increased HER2 expression in MCF-7 in vivo. Independent of HER4, abemaciclib and tamoxifen treatment considerably inhibited tumor growth in these mice. However, abemaciclib-treated hormone receptor-positive breast cancer patients with tumor-associated mdm2 gene copy gains or pronounced HER4 expression showed a reduced event-free survival. Evidently, the presence of HER4 affects the efficacy of tamoxifen and abemaciclib treatment in different estrogen receptor-positive breast cancer cells, even to different extents, and is associated with unfavorable outcomes in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Deniz Tümen
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerhard Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Florian Weber
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
- Institute of Pathology, University of Regensburg, 93093 Regensburg, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| |
Collapse
|
3
|
Rebhun RB, York D, De Graaf FMD, Yoon P, Batcher KL, Luker ME, Ryan S, Peyton J, Kent MS, Stern JA, Bannasch DL. A variant in the 5'UTR of ERBB4 is associated with lifespan in Golden Retrievers. GeroScience 2024; 46:2849-2862. [PMID: 37855863 PMCID: PMC11009206 DOI: 10.1007/s11357-023-00968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Genome-wide association studies (GWAS) in long-lived human populations have led to identification of variants associated with Alzheimer's disease and cardiovascular disease, the latter being the most common cause of mortality in people worldwide. In contrast, naturally occurring cancer represents the leading cause of death in pet dogs, and specific breeds like the Golden Retriever (GR) carry up to a 65% cancer-related death rate. We hypothesized that GWAS of long-lived GRs might lead to the identification of genetic variants capable of modifying longevity within this cancer-predisposed breed. A GWAS was performed comparing GR dogs ≥ 14 years to dogs dying prior to age 12 which revealed a significant association to ERBB4, the only member of the epidermal growth factor receptor family capable of serving as both a tumor suppressor gene and an oncogene. No coding variants were identified, however, distinct haplotypes in the 5'UTR were associated with reduced lifespan in two separate populations of GR dogs. When all GR dogs were analyzed together (n = 304), the presence of haplotype 3 was associated with shorter survival (11.8 years vs. 12.8 years, p = 0.024). GRs homozygous for haplotype 3 had the shortest survival, and GRs homozygous for haplotype 1 had the longest survival (11.6 years vs. 13.5 years, p = 0.0008). Sub-analyses revealed that the difference in lifespan for GRs carrying at least 1 copy of haplotype 3 was specific to female dogs (p = 0.009), whereas survival remained significantly different in both male and female GRs homozygous for haplotype 1 or haplotype 3 (p = 0.026 and p = 0.009, respectively). Taken together, these findings implicate a potential role for ERBB4 in GR longevity and provide evidence that within-breed canine lifespan studies could serve as a mechanism to identify favorable or disease-modifying variants important to the axis of aging and cancer.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA.
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Flora M D De Graaf
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Paula Yoon
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Madison E Luker
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Stephanie Ryan
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Jamie Peyton
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Danika L Bannasch
- Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Stoup N, Liberelle M, Lebègue N, Van Seuningen I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol Sci 2024; 45:552-576. [PMID: 38797570 DOI: 10.1016/j.tips.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) family is a class of transmembrane proteins, highly regarded as anticancer targets due to their pivotal role in various malignancies. Standard cancer treatments targeting the ErbB receptors include tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Despite their substantial survival benefits, the achievement of curative outcomes is hindered by acquired resistance. Recent advancements in anti-ErbB approaches, such as inhibitory peptides, nanobodies, targeted-protein degradation strategies, and bispecific antibodies (BsAbs), aim to overcome such resistance. More recently, emerging insights into the cell surface interactome of the ErbB family open new avenues for modulating ErbB signaling by targeting specific domains of ErbB partners. Here, we review recent progress in ErbB targeting and elucidate emerging paradigms that underscore the significance of EGF domain-containing proteins (EDCPs) as new ErbB-targeting pathways.
Collapse
Affiliation(s)
- Nicolas Stoup
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
5
|
Giffoni de Mello Morais Mata D, Chehade R, Hannouf MB, Raphael J, Blanchette P, Al-Humiqani A, Ray M. Appraisal of Systemic Treatment Strategies in Early HER2-Positive Breast Cancer-A Literature Review. Cancers (Basel) 2023; 15:4336. [PMID: 37686612 PMCID: PMC10486709 DOI: 10.3390/cancers15174336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The overexpression of the human epidermal growth factor receptor 2 (HER2+) accounts for 15-20% of all breast cancer phenotypes. Even after the completion of the standard combination of chemotherapy and trastuzumab, relapse events occur in approximately 15% of cases. The neoadjuvant approach has multiple benefits that include the potential to downgrade staging and convert previously unresectable tumors to operable tumors. In addition, achieving a pathologic complete response (pCR) following preoperative systemic treatment is prognostic of enhanced survival outcomes. Thus, optimal evaluation among the suitable strategies is crucial in deciding which patients should be selected for the neoadjuvant approach. METHODS A literature search was conducted in the Embase, Medline, and Cochrane electronic libraries. CONCLUSION The evaluation of tumor and LN staging and, hence, stratifying BC recurrence risk are decisive factors in guiding clinicians to optimize treatment decisions between the neoadjuvant versus adjuvant approaches. For each individual case, it is important to consider the most likely postsurgical outcome, since, if the patient does not obtain pCR following neoadjuvant treatment, they are eligible for adjuvant T-DM1 in the case of residual disease. This review of HER2-positive female BC outlines suitable neoadjuvant and adjuvant systemic treatment strategies for guiding clinical decision making around the selection of an appropriate therapy.
Collapse
Affiliation(s)
- Danilo Giffoni de Mello Morais Mata
- Division of Medical Oncology, London Regional Cancer Program, London Health Sciences Centre, Western University, London, ON N6A 5W9, Canada; (J.R.); (P.B.)
| | - Rania Chehade
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada; (R.C.); (A.A.-H.)
| | - Malek B. Hannouf
- Department of Internal Medicine, Western University, London, ON N6A 3K7, Canada;
| | - Jacques Raphael
- Division of Medical Oncology, London Regional Cancer Program, London Health Sciences Centre, Western University, London, ON N6A 5W9, Canada; (J.R.); (P.B.)
| | - Phillip Blanchette
- Division of Medical Oncology, London Regional Cancer Program, London Health Sciences Centre, Western University, London, ON N6A 5W9, Canada; (J.R.); (P.B.)
| | - Abdullah Al-Humiqani
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada; (R.C.); (A.A.-H.)
| | - Monali Ray
- Division of Medical Oncology, Markham Stouffville Hospital, Markham, ON L3P 7P3, Canada;
| |
Collapse
|
6
|
Dessai PG, Dessai SP, Dabholkar R, Pednekar P, Naik S, Mamledesai S, Gopal M, Pavadai P, Kumar BK, Murugesan S, Chandavarkar S, Theivendren P, Selvaraj K. Design, synthesis, graph theoretical analysis and molecular modelling studies of novel substituted quinoline analogues as promising anti-breast cancer agents. Mol Divers 2023; 27:1567-1586. [PMID: 35976550 DOI: 10.1007/s11030-022-10512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
The most promising class of heterocyclic compounds in medicinal chemistry are those with the quinolin-2-one nucleus. It is a versatile heterocyclic molecule that has been put together with numerous pharmaceutical substances and is crucial in the creation of anticancer medications. In this view, the present research work deals with design, synthesis, and characterization of various analogous of quinolin-2-one nucleus and evaluation of their anticancer activity against MCF-7 cells (adenoma breast cancer cell line). Fourteen new compounds have been synthesised using suitable synthetic route and are characterized by FTIR, 1H NMR, 13C NMR and Mass spectral data. Molecular docking studies of the title compounds were carried out using PyRx 0.8 tool in AutoDock Vina program. All the synthesised compounds were exhibited well conserved hydrogen bonding with one or more amino acid residues in the active pocket of EGFR tyrosine kinase (PDB ID: 1m17). The docking score of the derivatives ranged from - 6.7 to - 9.5 kcal mol-1, standard drug Imatinib with - 9.6 kcal mol-1 and standard active ligand 4-anilinoquinazoline with - 7.7 kcal mol-1. The designed compound IV-A1 showed least binding energy (- 9.5 kcal mol-1) against EGFR tyrosine kinase receptor. Further, top scored compound, IV-A1 found to be most significant against MCF-7 cells with IC50 value of 0.0870 µM mL-1, TGI of 0.0958 µM mL-1, GI50 of 0.00499 µM mL-1, LC50 of 1.670 µM mL-1.
Collapse
Affiliation(s)
- Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Shivani Prabhu Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Renuka Dabholkar
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Padmashree Pednekar
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Sahili Naik
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Shivlingrao Mamledesai
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, 637205, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, 560054, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, 333031, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, 333031, India
| | - Sachin Chandavarkar
- Department of Pharmacognosy, ASPM College of Pharmacy, Sangulwadi, 416 810, India.
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, 637205, India.
| | - Kunjiappan Selvaraj
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India.
| |
Collapse
|