1
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Ghosh A, Maske P, Patel V, Dubey J, Aniket K, Srivastava R. Theranostic applications of peptide-based nanoformulations for growth factor defective cancers. Int J Biol Macromol 2024; 260:129151. [PMID: 38181914 DOI: 10.1016/j.ijbiomac.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Growth factors play a pivotal role in orchestrating cellular growth and division by binding to specific cell surface receptors. Dysregulation of growth factor production or activity can contribute to the uncontrolled cell proliferation observed in cancer. Peptide-based nanoformulations (PNFs) have emerged as promising therapeutic strategies for growth factor-deficient cancers. PNFs offer multifaceted capabilities including targeted delivery, imaging modalities, combination therapies, resistance modulation, and personalized medicine approaches. Nevertheless, several challenges remain, including limited specificity, stability, pharmacokinetics, tissue penetration, toxicity, and immunogenicity. To address these challenges and optimize PNFs for clinical translation, in-depth investigations are warranted. Future research should focus on elucidating the intricate interplay between peptides and nanoparticles, developing robust spectroscopic and computational methodologies, and establishing a comprehensive understanding of the structure-activity relationship governing peptide-nanoparticle interactions. Bridging these knowledge gaps will propel the translation of peptide-nanoparticle therapies from bench to bedside. While a few peptide-nanoparticle drugs have obtained FDA approval for cancer treatment, the integration of nanostructured platforms with peptide-based medications holds tremendous potential to expedite the implementation of innovative anticancer interventions. Therefore, growth factor-deficient cancers present both challenges and opportunities for targeted therapeutic interventions, with peptide-based nanoformulations positioned as a promising avenue. Nonetheless, concerted research and development endeavors are essential to optimize the specificity, stability, and safety profiles of PNFs, thereby advancing the field of peptide-based nanotherapeutics in the realm of oncology research.
Collapse
Affiliation(s)
- Arnab Ghosh
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Priyanka Maske
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Vinay Patel
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Jyoti Dubey
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Kundu Aniket
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Rohit Srivastava
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| |
Collapse
|
3
|
Cao M, Liu WW, Maxwell S, Huda S, Webster R, Evoli A, Beeson D, Cossins JA, Vincent A. IgG1-3 MuSK Antibodies Inhibit AChR Cluster Formation, Restored by SHP2 Inhibitor, Despite Normal MuSK, DOK7, or AChR Subunit Phosphorylation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200147. [PMID: 37582613 PMCID: PMC10427144 DOI: 10.1212/nxi.0000000000200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and βAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in βAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.
Collapse
Affiliation(s)
- Michelangelo Cao
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Wei-Wei Liu
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Susan Maxwell
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Saif Huda
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Richard Webster
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Amelia Evoli
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - David Beeson
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Judith A Cossins
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Angela Vincent
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy.
| |
Collapse
|