1
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
2
|
Coêlho MDC, de Aquino GP, Santos AS, Seelaender M. Circulating factors in cancer cachexia: recent opportunities for translational research. Curr Opin Clin Nutr Metab Care 2024; 27:226-233. [PMID: 38547331 DOI: 10.1097/mco.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW To discuss the recent discoveries and limitations of the available literature on emerging circulating biomarkers of cancer cachexia. RECENT FINDINGS Studies on circulating factors in cancer cachexia show promising alternatives for diagnosing the syndrome in a minimally invasive manner in the clinic setting, as well as potential targets for cancer cachexia treatment. Factors secreted by the tumor and the adipose tissue, such as extracellular vesicles and soluble proteins, respectively, have been shown to either directly induce wasting in vitro and in vivo or to be altered in the cachectic phenotype. The detection and characterization of circulating cells allows detection of the precachectic stage and the levels of the soluble immune checkpoint protein programmed death ligand-1 (PD-L1) are correlated with the presence of the hallmarks of cancer cachexia. SUMMARY Structural, molecular, and metabolic alterations have been observed in various tissues, revealing the occurrence of sustained inter-compartment crosstalk in cachectic patients. Early diagnosis of cancer cachexia becomes crucial to avoid the establishment of refractory cachexia through the implementation of interventions that may attenuate systemic inflammation and muscle loss. More studies on human cancer cachexia are required in order to address the recently discovered cachexia-associated circulating factors' value as biomarkers of the syndrome.
Collapse
Affiliation(s)
- Marina de Castro Coêlho
- Cancer Metabolism Research Group, Laboratory of Experimental Surgery (LIM 26), Faculdade de Medicina da Universidade de São Paulo, HC-FMUSP, São Paulo - Brazil
| | | | | | | |
Collapse
|
3
|
Wang W, Ma C, Zhang Q, Jiang Y. TMT-labeled quantitative malonylome analysis on the longissimus dorsi muscle of Laiwu pigs reveals the role of ACOT7 in fat deposition. J Proteomics 2024; 298:105129. [PMID: 38395145 DOI: 10.1016/j.jprot.2024.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by an extremely high level of intramuscular fat (IMF) content (9% ∼ 12%), but the regulatory mechanism underlying intramuscular fat deposition in skeletal muscle is still unknown. In this study, the TMT-labeled quantitative malonylome of the longissimus dorsi muscle in Laiwu pigs at the fastest IMF deposition stage (240 d vs 120 d) was compared to analyze the molecular mechanism of IMF variation in pigs. In Laiwu pigs aged 240 days/120 days, we identified 291 malonylated lysine sites across 188 proteins in the longissimus dorsi muscle. Among these, 38 sites across 31 proteins exhibited differential malonylation. Annotation analysis and enrichment analysis were performed for differentially malonylated proteins (DMPs). These DMPs were mainly clustered into 12 GO functional categories accounting for 5 biological processes, 4 cellular components and 3 molecular functions, and 2 signaling pathways by KEGG enrichment analysis. The function of differentially malonylated protein ACOT7 in the process of fat deposition was further investigated during the differentiation of 3 T3-L1 cells. The results showed that the protein level of ACOT7 in 3 T3-L1 cells decreased but the malonylated level of ACOT7 increased significantly. The malonyl-CoA that is synthesized by ACSF3 affected the malonylation level of ACOT7 in 3 T3-L1 cells. SIGNIFICANCE: The intramuscular fat (IMF) content, by affecting sensory quality traits of meat, such as tenderness, flavor and juiciness, plays an important role in meat quality. Using TMT-based quantitative malonylated proteome analysis, we identified malonylated proteins in LD muscle samples in two stages (120 d and 240 d) of development and further identified differentially malonylated proteins, such as SLC25A4, ANXA5, TPM3 and ACOT7, that are associated with intramuscular fat deposition and fat metabolism in pigs. These differentially malonylated proteins could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs. In addition, we found that the malonyl-CoA in 3 T3-L1 cells is mainly synthesized by ACSF3, affecting the malonylated level of ACOT7. The study provides some data concerning the role of protein malonylation in regulating the variation in porcine IMF content.
Collapse
Affiliation(s)
- Wenlei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Cai Ma
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, No. 346 Guanhai Road, Yantai 264003, PR China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
4
|
Ru Q, Chen L, Xu G, Wu Y. Exosomes in the pathogenesis and treatment of cancer-related cachexia. J Transl Med 2024; 22:408. [PMID: 38689293 PMCID: PMC11062016 DOI: 10.1186/s12967-024-05201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer-related cachexia is a metabolic syndrome characterized by weight loss, adipose tissue decomposition, and progressive skeletal muscle atrophy. It is a major complication of many advanced cancers and seriously affects the quality of life and survival of cancer patients. However, the specific molecules that mediate cancer-related cachexia remain elusive, and the fundamental cellular and molecular mechanisms associated with muscle atrophy and lipidolysis in cancer patients still need to be investigated. Exosomes, a newly discovered class of small extracellular vesicles that facilitate intercellular communication, have a significant role in the onset and development of various cancers. Studies have shown that exosomes play a role in the onset and progression of cancer-related cachexia by transporting active molecules such as nucleic acids and proteins. This review aimed to provide an overview of exosome developments in cancer-induced skeletal muscle atrophy and adipose tissue degradation. More importantly, exosomes were shown to have potential as diagnostic markers or therapeutic strategies for cachexia and were prospected, providing novel strategies for the diagnosis and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|