1
|
Veronez LC, Xavier AET, Nagano LF, Correa CAP, Borges KS, Santos P, Baroni M, Silva Queiroz RDP, Antonini SRR, Yunes JA, Brandalise SR, Molina CAF, Pinto EM, Valera ET, Tone LG, Scrideli CA. Identifying prognostic hub genes and key pathways in pediatric adrenocortical tumors through RNA sequencing and Co-expression analysis. Mol Cell Endocrinol 2024; 594:112383. [PMID: 39413985 DOI: 10.1016/j.mce.2024.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Pediatric adrenocortical tumors (ACTs), rare conditions with uncertain prognoses, have high incidence in southern and southeastern Brazil. Pediatric ACTs are highly heterogeneous, so establishing prognostic markers for these tumors is challenging. We have conducted transcriptomic analysis on 14 pediatric ACT samples and compared cases with favorable and unfavorable clinical outcomes to identify prognostically significant genes. This comparison showed 1257 differentially expressed genes in favorable and unfavorable cases. Among these genes, 15 out of 60 hub genes were significantly associated with five-year event-free survival (EFS), and 10 had significant diagnostic value for predicting ACT outcomes in an independent microarray dataset of pediatric adrenocortical carcinomas (GSE76019). Overexpression of N4BP2, HSPB6, JUN, APBB1IP, STK17B, CSNK1D, and KDM3A was associated with poorer EFS, whereas lower expression of ISCU, PTPR, PRKAB2, CD48, PRF1, ITGAL, KLK15, and HIST1H3J was associated with worse outcomes. Collectively, these findings underscore the prognostic significance of these hub genes and suggest that they play a potential role in pediatric ACT progression and are useful predictors of clinical outcomes.
Collapse
Affiliation(s)
- Luciana Chain Veronez
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Luiz Fernando Nagano
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Carolina Alves Pereira Correa
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Paula Santos
- Department of Psychology, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, 14049-900, Ribeirão Preto, SP, Brazil
| | - Mirella Baroni
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Rosane de Paula Silva Queiroz
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Sonir Roberto Rauber Antonini
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | - Carlos Augusto Fernandes Molina
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of Sao Paulo, São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Emilia Modolo Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elvis Terci Valera
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Luiz Gonzaga Tone
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Carlos Alberto Scrideli
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology, INCT BioOncoPed, Brazil.
| |
Collapse
|
2
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Xu J, Yang W, Xie X, Gu C, Zhao L, Liu F, Zhang N, Bai Y, Liu D, Liu H, Jin X, Meng Y. Identification of 10 differentially expressed genes involved in the tumorigenesis of cervical cancer via next-generation sequencing. PeerJ 2024; 12:e18157. [PMID: 39372720 PMCID: PMC11453159 DOI: 10.7717/peerj.18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background The incidence and mortality of cervical cancer remain high in female malignant tumors worldwide. There is still a lack of diagnostic and prognostic markers for cervical carcinoma. This study aimed to screen differentially expressed genes (DEGs) between normal and cervical cancer tissues to identify candidate genes for further research. Methods Uterine cervical specimens were resected from our clinical patients after radical hysterectomy. Three patients' transcriptomic datasets were built by the next generation sequencing (NGS) results. DEGs were selected through the edgeR and DESeq2 packages in the R environment. Functional enrichment analysis, including GO/DisGeNET/KEGG/Reactome enrichment analysis, was performed. Normal and cervical cancer tissue data from the public databases TCGA and GTEx were collected to compare the expression levels of 10 selected DEGs in tumor and normal tissues. ROC curve and survival analysis were performed to compare the diagnostic and prognostic values of each gene. The expression levels of candidate genes were verified in 15 paired clinical specimens via quantitative real-time polymerase chain reaction. Results There were 875 up-regulated and 1,482 down-regulated genes in cervical cancer samples compared with the paired adjacent normal cervical tissues according to the NGS analysis. The top 10 DEGs included APOD, MASP1, ACKR1, C1QTNF7, SFRP4, HSPB6, GSTM5, IGFBP6, F10 and DCN. GO, DisGeNET and Reactome analyses revealed that the DEGs were related to extracellular matrix and angiogenesis which might influence tumorigenesis. KEGG enrichment showed that PI3K-Akt signaling pathway might be involved in cervical cancer tumorigenesis and progression. The expression levels of selected genes were decreased in tumors in both the public database and our experimental clinical specimens. All the candidate genes showed excellent diagnostic value, and the AUC values exceeded 0.90. Additionally, APOD, ACKR1 and SFRP4 expression levels could help predict the prognosis of patients with cervical cancer. Conclusions In this study, we selected the top 10 DEGs which were down-regulated in cervical cancer tissues. All of them had dramatically diagnostic value. APOD, ACKR1 and SFRP4 were associated with the survivals of cervical cancer. C1QTNF7, HSPB6, GSTM5, IGFBP6 and F10 were first reported to be candidate genes of cervical carcinoma.
Collapse
Affiliation(s)
- Jia Xu
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Yang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Xie
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chenglei Gu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Nina Zhang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuge Bai
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hainan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangshu Jin
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
5
|
Li X, Qian Y, Hu Y, Chen J, Yue H, Deng L. MSF-PFP: A Novel Multisource Feature Fusion Model for Protein Function Prediction. J Chem Inf Model 2024; 64:1502-1511. [PMID: 38413369 DOI: 10.1021/acs.jcim.3c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Protein function prediction is essential for disease treatment and drug development; yet, traditional biological experimental methods are less efficient in annotating protein function, and existing automated methods fail to fully leverage protein multisource data. Here, we present MSF-PFP, a computational framework that fuses multisource data features to predict protein function with high accuracy. Our framework designs specific models for feature extraction based on the characteristics of various data sources, including a global-local-individual strategy for local location features. MSF-PFP then integrates extracted features through a multisource feature fusion model, ultimately categorizing protein functions. Experimental results demonstrate that MSF-PFP outperforms eight state-of-the-art models, achieving FMax scores of 0.542, 0.675, and 0.624 for the biological process (BP), molecular function (MF), and cellular component (CC), respectively. The source code and data set for MSF-PFP are available at https://swanhub.co/TianGua/MSF-PFP, facilitating further exploration and validation of the proposed framework. This study highlights the potential of multisource data fusion in enhancing protein function prediction, contributing to improved disease therapy and medication discovery strategies.
Collapse
Affiliation(s)
- Xinhui Li
- School of Software, Xinjiang University, Urumqi 830091, China
- Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Software Engineering, Xinjiang University, Urumqi 830091, China
| | - Yurong Qian
- School of Software, Xinjiang University, Urumqi 830091, China
- Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Software Engineering, Xinjiang University, Urumqi 830091, China
| | - Yue Hu
- School of Software, Xinjiang University, Urumqi 830091, China
- Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Software Engineering, Xinjiang University, Urumqi 830091, China
| | - Jiaying Chen
- School of Software, Xinjiang University, Urumqi 830091, China
- Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Software Engineering, Xinjiang University, Urumqi 830091, China
| | - Haitao Yue
- School of Future Technology, Xinjiang University, Urumqi 830017, China
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lei Deng
- School of Software, Xinjiang University, Urumqi 830091, China
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|