1
|
Portelinha A, Wang S, Parsa S, Jiang M, Gorelick AN, Mohanty S, Sharma S, de Stanchina E, Berishaj M, Zhao C, Heward J, Aryal NK, Tavana O, Wen J, Fitzgibbon J, Dogan A, Younes A, Melnick AM, Wendel HG. SETD1B mutations confer apoptosis resistance and BCL2 independence in B cell lymphoma. J Exp Med 2024; 221:e20231143. [PMID: 39235528 PMCID: PMC11380151 DOI: 10.1084/jem.20231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The translocation t(14;18) activates BCL2 and is considered the initiating genetic lesion in most follicular lymphomas (FL). Surprisingly, FL patients fail to respond to the BCL2 inhibitor, Venetoclax. We show that mutations and deletions affecting the histone lysine methyltransferase SETD1B (KMT2G) occur in 7% of FLs and 16% of diffuse large B cell lymphomas (DLBCL). Deficiency in SETD1B confers striking resistance to Venetoclax and an experimental MCL-1 inhibitor. SETD1B also acts as a tumor suppressor and cooperates with the loss of KMT2D in lymphoma development in vivo. Consistently, loss of SETD1B in human lymphomas typically coincides with loss of KMT2D. Mechanistically, SETD1B is required for the expression of several proapoptotic BCL2 family proteins. Conversely, inhibitors of the KDM5 histone H3K4 demethylases restore BIM and BIK expression and synergize with Venetoclax in SETD1B-deficient lymphomas. These results establish SETD1B as an epigenetic regulator of cell death and reveal a pharmacological strategy to augment Venetoclax sensitivity in lymphoma.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Sara Parsa
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sagarajit Mohanty
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Soumya Sharma
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | | | - Neeraj K Aryal
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Omid Tavana
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University and Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australia
| | | | - Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Haematology R&D, AstraZeneca , New York, NY, USA
| | - Ari M Melnick
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
2
|
Xie Q, Hu Y, Zhang C, Zhang C, Qin J, Zhao Y, An Q, Zheng J, Shi C. Curcumin blunts epithelial-mesenchymal transition to alleviate invasion and metastasis of prostate cancer through the JARID1D demethylation. Cancer Cell Int 2024; 24:303. [PMID: 39218854 PMCID: PMC11366129 DOI: 10.1186/s12935-024-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.
Collapse
Affiliation(s)
- Qinghua Xie
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chenyang Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jie Zheng
- National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Ortiz G, Longbotham JE, Qin SL, Zhang MY, Lee GM, Neitz RJ, Kelly MJS, Arkin MR, Fujimori DG. Identifying ligands for the PHD1 finger of KDM5A through high-throughput screening. RSC Chem Biol 2024; 5:209-215. [PMID: 38456036 PMCID: PMC10915964 DOI: 10.1039/d3cb00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
PHD fingers are a type of chromatin reader that primarily recognize chromatin as a function of lysine methylation state. Dysregulated PHD fingers are implicated in various human diseases, including acute myeloid leukemia. Targeting PHD fingers with small molecules is considered challenging as their histone tail binding pockets are often shallow and surface-exposed. The KDM5A PHD1 finger regulates the catalytic activity of KDM5A, an epigenetic enzyme often misregulated in cancers. To identify ligands that disrupt the PHD1-histone peptide interaction, we conducted a high-throughput screen and validated hits by orthogonal methods. We further elucidated structure-activity relationships in two classes of compounds to identify features important for binding. Our investigation offers a starting point for further optimization of small molecule PHD1 ligands.
Collapse
Affiliation(s)
- Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Sophia L Qin
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Meng Yao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Gregory M Lee
- Small Molecule Discovery Center (SMDC), University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - R Jeffrey Neitz
- Small Molecule Discovery Center (SMDC), University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Michelle R Arkin
- Small Molecule Discovery Center (SMDC), University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| |
Collapse
|
5
|
Jawarkar RD, Zaki MEA, Al-Hussain SA, Al-Mutairi AA, Samad A, Masand V, Humane V, Mali S, Alzahrani AYA, Rashid S, Elossaily GM. Mechanistic QSAR modeling derived virtual screening, drug repurposing, ADMET and in- vitro evaluation to identify anticancer lead as lysine-specific demethylase 5a inhibitor. J Biomol Struct Dyn 2024:1-31. [PMID: 38385447 DOI: 10.1080/07391102.2024.2319104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024]
Abstract
A lysine-specific demethylase is an enzyme that selectively eliminates methyl groups from lysine residues. KDM5A, also known as JARID1A or RBP2, belongs to the KDM5 Jumonji histone demethylase subfamily. To identify novel molecules that interact with the LSD5A receptor, we created a quantitative structure-activity relationship (QSAR) model. A group of 435 compounds was used in a study of the quantitative relationship between structure and activity to guess the IC50 values for blocking LASD5A. We used a genetic algorithm-multilinear regression-based quantitative structure-activity connection model to forecast the bioactivity (PIC50) of 1615 food and drug administration pharmaceuticals from the zinc database with the goal of repurposing clinically used medications. We used molecular docking, molecular dynamic simulation modelling, and molecular mechanics generalised surface area analysis to investigate the molecule's binding mechanism. A genetic algorithm and multi-linear regression method were used to make six variable-based quantitative structure-activity relationship models that worked well (R2 = 0.8521, Q2LOO = 0.8438, and Q2LMO = 0.8414). ZINC000000538621 was found to be a new hit against LSD5A after a quantitative structure-activity relationship-based virtual screening of 1615 zinc food and drug administration compounds. The docking analysis revealed that the hit molecule 11 in the KDM5A binding pocket adopted a conformation similar to the pdb-6bh1 ligand (docking score: -8.61 kcal/mol). The results from molecular docking and the quantitative structure-activity relationship were complementary and consistent. The most active lead molecule 11, which has shown encouraging results, has good absorption, distribution, metabolism, and excretion (ADME) properties, and its toxicity has been shown to be minimal. In addition, the MTT assay of ZINC000000538621 with MCF-7 cell lines backs up the in silico studies. We used molecular mechanics generalise borne surface area analysis and a 200-ns molecular dynamics simulation to find structural motifs for KDM5A enzyme interactions. Thus, our strategy will likely expand food and drug administration molecule repurposing research to find better anticancer drugs and therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug discovery, Dr. Rajendra Gode Institute of Pharmacy, Amravati, Maharashtra, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Vijay Masand
- Department of Chemistry, Amravati, Maharashtra, India
| | - Vivek Humane
- Department of Chemistry, Shri R. R. Lahoti Science college, Morshi District: Amravati, Maharashtra, India
| | - Suraj Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Nerul, Navi Mumbai, India
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Rogers MF, Marshall OJ, Secombe J. KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila. Development 2023; 150:dev202024. [PMID: 37800333 PMCID: PMC10651110 DOI: 10.1242/dev.202024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.
Collapse
Affiliation(s)
- Michael F. Rogers
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Owen J. Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Longbotham JE, Kelly MJS, Fujimori DG. Recognition of Histone H3 Methylation States by the PHD1 Domain of Histone Demethylase KDM5A. ACS Chem Biol 2023; 18:1915-1925. [PMID: 33621062 PMCID: PMC8380758 DOI: 10.1021/acschembio.0c00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PHD reader domains are chromatin binding modules often responsible for the recruitment of large protein complexes that contain histone modifying enzymes, chromatin remodelers, and DNA repair machinery. A majority of PHD domains recognize N-terminal residues of histone H3 and are sensitive to the methylation state of Lys4 in histone H3 (H3K4). Histone demethylase KDM5A, an epigenetic eraser enzyme that contains three PHD domains, is often overexpressed in various cancers, and its demethylation activity is allosterically enhanced when its PHD1 domain is bound to the H3 tail. The allosteric regulatory function of PHD1 expands roles of reader domains, suggesting unique features of this chromatin interacting module. Our previous studies determined the H3 binding site of PHD1, although it remains unclear how the H3 tail interacts with the N-terminal residues of PHD1 and how PHD1 discriminates against H3 tails with varying degrees of H3K4 methylation. Here, we have determined the solution structure of apo and H3 bound PHD1. We observe conformational changes occurring in PHD1 in order to accommodate H3, which interestingly binds in a helical conformation. We also observe differential interactions of binding residues with differently methylated H3K4 peptides (me0, me1, me2, or me3), providing a rationale for PHD1's preference for lower methylation states of H3K4. We further assessed the contributions of various H3 interacting residues in the PHD1 domain to the binding of H3 peptides. The structural details of the H3 binding site could provide useful information to aid the development of allosteric small molecule modulators of KDM5A.
Collapse
Affiliation(s)
- James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
- Quantitative Biosciences Institute, University of California San Francisco, 1700 Fourth Street, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Li S, He J, Liao X, He Y, Chen R, Chen J, Hu S, Sun J. Fbxo22 inhibits metastasis in triple-negative breast cancer through ubiquitin modification of KDM5A and regulation of H3K4me3 demethylation. Cell Biol Toxicol 2023; 39:1641-1655. [PMID: 36112263 PMCID: PMC10425479 DOI: 10.1007/s10565-022-09754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
The importance of Fbxo22 in carcinogenesis has been highly documented. Here, we discussed downstream regulatory factors of Fbxo22 in TNBC. RNA-sequencing was conducted for identifying differentially expressed genes, followed by construction of a regulatory network. Expression patterns of Fbxo22/KDM5A in TNBC were determined by their correlation with the prognosis analyzed. Then, regulation mechanisms between Fbxo22 and KDM5A as well as between KDM5A and H3K4me3 were assayed. After silencing and overexpression experiments, the significance of Fbxo22 in repressing tumorigenesis in vitro and in vivo was explored. Fbxo22 was poorly expressed, while KDM5A was highly expressed in TNBC. Patients with elevated Fbxo22, decreased KDM5A, or higher p16 had long overall survival. Fbxo22 reduced the levels of KDM5A by ubiquitination. KDM5A promoted histone H3K4me3 demethylation to downregulate p16 expression. Fbxo22 reduced KDM5A expression to enhance p16, thus inducing DNA damage as well as reducing tumorigenesis and metastasis in TNBC. Our study validated FBXO22 as a tumor suppressor in TNBC through ubiquitination of KDM5A and regulation of p16.
Collapse
Affiliation(s)
- Siqiaozhi Li
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518057, People's Republic of China
| | - Jinsong He
- Department of Breast Surgery, Shenzhen Hospital of Peking University, Shenzhen, 518057, People's Republic of China
| | - Xin Liao
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
| | - Yixuan He
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
| | - Rui Chen
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, No. 1120, Lianhua Road, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Sean Hu
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518057, People's Republic of China
| | - Jia Sun
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China.
- Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, No. 1120, Lianhua Road, Shenzhen, 518057, Guangdong Province, People's Republic of China.
| |
Collapse
|
9
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Yheskel M, Sidoli S, Secombe J. Proximity labeling reveals a new in vivo network of interactors for the histone demethylase KDM5. Epigenetics Chromatin 2023; 16:8. [PMID: 36803422 PMCID: PMC9938590 DOI: 10.1186/s13072-023-00481-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND KDM5 family proteins are multi-domain regulators of transcription that when dysregulated contribute to cancer and intellectual disability. KDM5 proteins can regulate transcription through their histone demethylase activity in addition to demethylase-independent gene regulatory functions that remain less characterized. To expand our understanding of the mechanisms that contribute to KDM5-mediated transcription regulation, we used TurboID proximity labeling to identify KDM5-interacting proteins. RESULTS Using Drosophila melanogaster, we enriched for biotinylated proteins from KDM5-TurboID-expressing adult heads using a newly generated control for DNA-adjacent background in the form of dCas9:TurboID. Mass spectrometry analyses of biotinylated proteins identified both known and novel candidate KDM5 interactors, including members of the SWI/SNF and NURF chromatin remodeling complexes, the NSL complex, Mediator, and several insulator proteins. CONCLUSIONS Combined, our data shed new light on potential demethylase-independent activities of KDM5. In the context of KDM5 dysregulation, these interactions may play key roles in the alteration of evolutionarily conserved transcriptional programs implicated in human disorders.
Collapse
Affiliation(s)
- Matanel Yheskel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Zhang SM, Cao J, Yan Q. KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:113-137. [PMID: 37751138 DOI: 10.1007/978-3-031-38176-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The histone lysine demethylase 5 (KDM5) family proteins are Fe2+ and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.
Collapse
Affiliation(s)
- Shang-Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale Center for Immuno-Oncology, Yale Center for Research on Aging, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| |
Collapse
|
12
|
Yoo J, Kim GW, Jeon YH, Kim JY, Lee SW, Kwon SH. Drawing a line between histone demethylase KDM5A and KDM5B: their roles in development and tumorigenesis. Exp Mol Med 2022; 54:2107-2117. [PMID: 36509829 PMCID: PMC9794821 DOI: 10.1038/s12276-022-00902-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Distinct epigenetic modifiers ensure coordinated control over genes that govern a myriad of cellular processes. Growing evidence shows that dynamic regulation of histone methylation is critical for almost all stages of development. Notably, the KDM5 subfamily of histone lysine-specific demethylases plays essential roles in the proper development and differentiation of tissues, and aberrant regulation of KDM5 proteins during development can lead to chronic developmental defects and even cancer. In this review, we adopt a unique perspective regarding the context-dependent roles of KDM5A and KDM5B in development and tumorigenesis. It is well known that these two proteins show a high degree of sequence homology, with overlapping functions. However, we provide deeper insights into their substrate specificity and distinctive function in gene regulation that at times divert from each other. We also highlight both the possibility of targeting KDM5A and KDM5B to improve cancer treatment and the limitations that must be overcome to increase the efficacy of current drugs.
Collapse
Affiliation(s)
- Jung Yoo
- grid.15444.300000 0004 0470 5454College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Go Woon Kim
- grid.15444.300000 0004 0470 5454College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Yu Hyun Jeon
- grid.15444.300000 0004 0470 5454College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Ji Yoon Kim
- grid.15444.300000 0004 0470 5454College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Sang Wu Lee
- grid.15444.300000 0004 0470 5454College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - So Hee Kwon
- grid.15444.300000 0004 0470 5454College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| |
Collapse
|
13
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
14
|
Cai WL, Chen JFY, Chen H, Wingrove E, Kurley SJ, Chan LH, Zhang M, Arnal-Estape A, Zhao M, Balabaki A, Li W, Yu X, Krop ED, Dou Y, Liu Y, Jin J, Westbrook TF, Nguyen DX, Yan Q. Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation. eLife 2022; 11:e78163. [PMID: 36043466 PMCID: PMC9584608 DOI: 10.7554/elife.78163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/24/2022] [Indexed: 12/26/2022] Open
Abstract
Metastatic breast cancer remains a major cause of cancer-related deaths in women, and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, a combination of WDR5 targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Wesley L Cai
- Hillman Cancer Center, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Pathology, Yale UniversityNew HavenUnited States
| | | | - Huacui Chen
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Emily Wingrove
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Sarah J Kurley
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Lok Hei Chan
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Meiling Zhang
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Anna Arnal-Estape
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
| | - Minghui Zhao
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Amer Balabaki
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Wenxue Li
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ethan D Krop
- Department of Pathology, Yale UniversityNew HavenUnited States
- Department of Biosciences, Rice University,HoustonUnited States
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann ArborAnn ArborUnited States
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Yansheng Liu
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Thomas F Westbrook
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Don X Nguyen
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Stem Cell Center, Yale School of MedicineNew HavenUnited States
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine,New HavenUnited States
| | - Qin Yan
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Stem Cell Center, Yale School of MedicineNew HavenUnited States
- Yale Center for Immuno-Oncology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
15
|
Ma X, Lu J, Yang P, Zhang Z, Huang B, Li R, Ye R. 8-Hydroxyquinoline-modified ruthenium(II) polypyridyl complexes for JMJD inhibition and photodynamic antitumor therapy. Dalton Trans 2022; 51:13902-13909. [PMID: 36040403 DOI: 10.1039/d2dt01765b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an ideal scaffold for metal ion chelation, 8-hydroxyquinoline (8HQ) can chelate different metal ions, such as Fe2+, Cu2+, Zn2+, etc. Here, by integrating 8HQ with a ruthenium(II) polypyridyl moiety, two Ru(II)-8HQ complexes (Ru1 and Ru2), [Ru(N-N)2L](PF6)2 (L = 2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)quinolin-8-ol; N-N: 2,2'-bipyridine (bpy, in Ru1), 1,10-phenanthroline (phen, in Ru2)) were designed and synthesized. In both complexes, ligand L is an 8HQ derivative designed to chelate the cofactor Fe2+ of jumonji C domain-containing demethylase (JMJD). As expected, Ru1 and Ru2 could inhibit the activity of JMJD by chelating the key cofactor Fe2+ of JMJD, resulting in the upregulation of histone-methylation levels in human lung cancer (A549) cells, and the upregulation was more pronounced under light conditions. In addition, MTT data showed that Ru1 and Ru2 exhibited lower dark toxicity, and light irradiation could significantly enhance their antitumor activity. The marked photodynamic activities of Ru1 and Ru2 could induce the elevation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP), and activation of caspases. These mechanistic studies indicated that Ru1 and Ru2 could induce apoptosis through the combination of JMJD inhibitory and PDT activities, thereby achieving dual antitumor effects.
Collapse
Affiliation(s)
- Xiurong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Junjian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Peixin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Zheng Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China.
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
16
|
Diverse Functions of KDM5 in Cancer: Transcriptional Repressor or Activator? Cancers (Basel) 2022; 14:cancers14133270. [PMID: 35805040 PMCID: PMC9265395 DOI: 10.3390/cancers14133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are crucial for chromatin remodeling and transcriptional regulation. Post-translational modifications of histones are epigenetic processes that are fine-tuned by writer and eraser enzymes, and the disorganization of these enzymes alters the cellular state, resulting in human diseases. The KDM5 family is an enzymatic family that removes di- and tri-methyl groups (me2 and me3) from lysine 4 of histone H3 (H3K4), and its dysregulation has been implicated in cancer. Although H3K4me3 is an active chromatin marker, KDM5 proteins serve as not only transcriptional repressors but also transcriptional activators in a demethylase-dependent or -independent manner in different contexts. Notably, KDM5 proteins regulate the H3K4 methylation cycle required for active transcription. Here, we review the recent findings regarding the mechanisms of transcriptional regulation mediated by KDM5 in various contexts, with a focus on cancer, and further shed light on the potential of targeting KDM5 for cancer therapy.
Collapse
|
17
|
Sanchez A, Buck-Koehntop BA, Miller KM. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Bioessays 2022; 44:e2200015. [PMID: 35532219 DOI: 10.1002/bies.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, Zhang Y, An Y, Chen JF, Chan LH, Aoshima A, Lang SM, Tang Z, Che X, Li Y, Rutter SJ, Bossuyt V, Chen X, Morrow JS, Pusztai L, Rimm DL, Yin M, Yan Q. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Sci Transl Med 2022; 14:eabf5473. [PMID: 35108062 PMCID: PMC9003667 DOI: 10.1126/scitranslmed.abf5473] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the major cause of cancer-related deaths due to the lack of effective therapies. Emerging evidence suggests that certain epigenetic and transcriptional regulators drive cancer metastasis and could be targeted for metastasis treatment. To identify epigenetic regulators of breast cancer metastasis, we profiled the transcriptomes of matched pairs of primary breast tumors and metastases from human patients. We found that distant metastases are more immune inert with increased M2 macrophages compared to their matched primary tumors. The acetyl-lysine reader, cat eye syndrome chromosome region candidate 2 (CECR2), was the top up-regulated epigenetic regulator in metastases associated with an increased abundance of M2 macrophages and worse metastasis-free survival. CECR2 was required for breast cancer metastasis in multiple mouse models, with more profound effect in the immunocompetent setting. Mechanistically, the nuclear factor κB (NF-κB) family member v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) recruits CECR2 to increase chromatin accessibility and activate the expression of their target genes. These target genes include multiple metastasis-promoting genes, such as TNC, MMP2, and VEGFA, and cytokine genes CSF1 and CXCL1, which are critical for immunosuppression at metastatic sites. Consistent with these results, pharmacological inhibition of CECR2 bromodomain impeded NF-κB-mediated immune suppression by macrophages and inhibited breast cancer metastasis. These results reveal that targeting CECR2 may be a strategy to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zongzhi Z. Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Keisuke Aoshima
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Wesley L. Cai
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Hongyin Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tianrui Xu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yangyi Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongyan An
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jocelyn F. Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lok Hei Chan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Asako Aoshima
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhenwei Tang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuanlin Che
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Li
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sara J. Rutter
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Veerle Bossuyt
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jon S. Morrow
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Breast Medical Oncology, Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - David. L. Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mingzhu Yin
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Liu C, Zheng Z, Li W, Tang D, Zhao L, He Y, Li H. Inhibition of KDM5A attenuates cisplatin-induced hearing loss via regulation of the MAPK/AKT pathway. Cell Mol Life Sci 2022; 79:596. [PMID: 36396833 PMCID: PMC9672031 DOI: 10.1007/s00018-022-04565-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
The study aimed to investigate the potential role of lysine-specific demethylase 5A (KDM5A) in cisplatin-induced ototoxicity. The effect of the KDM5A inhibitor CPI-455 was assessed by apoptosis assay, immunofluorescence, flow cytometry, seahorse respirometry assay, and auditory brainstem response test. RNA sequencing, qRT-PCR, and CUT&Tag assays were used to explore the mechanism underlying CPI-455-induced protection. Our results demonstrated that the expression of KDM5A was increased in cisplatin-injured cochlear hair cells compared with controls. CPI-455 treatment markedly declined KDM5A and elevated H3K4 trimethylation levels in cisplatin-injured cochlear hair cells. Moreover, CPI-455 effectively prevented the death of hair cells and spiral ganglion neurons and increased the number of ribbon synapses in a cisplatin-induced ototoxicity mouse model both in vitro and in vivo. In HEI-OC1 cells, KDM5A knockdown reduced reactive oxygen species accumulation and improved mitochondrial membrane potential and oxidative phosphorylation under cisplatin-induced stress. Mechanistically, through transcriptomics and epigenomics analyses, a set of apoptosis-related genes, including Sos1, Sos2, and Map3k3, were regulated by CPI-455. Altogether, our findings indicate that inhibition of KDM5A may represent an effective epigenetic therapeutic target for preventing cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Chang Liu
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Zhiwei Zheng
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Dongmei Tang
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Liping Zhao
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Huawei Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China ,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 People’s Republic of China ,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
20
|
Yang GJ, Wu J, Miao L, Zhu MH, Zhou QJ, Lu XJ, Lu JF, Leung CH, Ma DL, Chen J. Pharmacological inhibition of KDM5A for cancer treatment. Eur J Med Chem 2021; 226:113855. [PMID: 34555614 DOI: 10.1016/j.ejmech.2021.113855] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Lysine-specific demethylase 5A (KDM5A, also named RBP2 or JARID1A) is a demethylase that can remove methyl groups from histones H3K4me1/2/3. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, drug resistance, and is associated with poor prognosis. Pharmacological inhibition of KDM5A has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of KDM5A, its role in carcinogenesis, a comparison of currently available approaches for screening KDM5A inhibitors, a classification of KDM5A inhibitors, and its potential as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
21
|
Hoekstra M, Biggar KK. Identification of in vitro JMJD lysine demethylase candidate substrates via systematic determination of substrate preference. Anal Biochem 2021; 633:114429. [PMID: 34678252 DOI: 10.1016/j.ab.2021.114429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/25/2023]
Abstract
A major regulatory influence over gene expression is the dynamic post translational methylation of histone proteins, with major implications from both lysine methylation and demethylation. The KDM5/JARID1 sub-family of Fe(II)/2-oxoglutarate dependent lysine-specific demethylases is, in part, responsible for the removal of tri/dimethyl modifications from lysine 4 of histone H3 (i.e., H3K4me3/2), a mark associated with active gene expression. Although the relevance of KDM5 activity to disease progression has been primarily established through its ability to regulate gene expression via histone methylation, there is evidence that these enzymes may also target non-histone proteins. To aid in the identification of new non-histone substrates, we examined KDM5A in vitro activity towards a library of 180 permutated peptide substrates derived from the H3K4me3 sequence. From this data, a recognition motif was identified and used to predict candidate KDM5A substrates from the methyllysine proteome. High-ranking candidate substrates were then validated for in vitro KDM5A activity using representative trimethylated peptides. Our approach correctly identified activity towards 90% of high-ranked substrates. Here, we have demonstrated the usefulness of our method in identifying candidate substrates that is applicable to any Fe(II)- and 2-oxoglutarate dependent demethylase.
Collapse
Affiliation(s)
- Matthew Hoekstra
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
22
|
Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, McGeary MK, Song E, Blenman KRM, Micevic G, Jessel S, Zhang Y, Yin M, Booth CJ, Jilaveanu LB, Damsky W, Sznol M, Kluger HM, Iwasaki A, Bosenberg MW, Yan Q. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021; 598:682-687. [PMID: 34671158 PMCID: PMC8555464 DOI: 10.1038/s41586-021-03994-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Tumours use various strategies to evade immune surveillance1,2. Immunotherapies targeting tumour immune evasion such as immune checkpoint blockade have shown considerable efficacy on multiple cancers3,4 but are ineffective for most patients due to primary or acquired resistance5-7. Recent studies showed that some epigenetic regulators suppress anti-tumour immunity2,8-12, suggesting that epigenetic therapies could boost anti-tumour immune responses and overcome resistance to current immunotherapies. Here we show that, in mouse melanoma models, depletion of KDM5B-an H3K4 demethylase that is critical for melanoma maintenance and drug resistance13-15-induces robust adaptive immune responses and enhances responses to immune checkpoint blockade. Mechanistically, KDM5B recruits the H3K9 methyltransferase SETDB1 to repress endogenous retroelements such as MMVL30 in a demethylase-independent manner. Derepression of these retroelements activates cytosolic RNA-sensing and DNA-sensing pathways and the subsequent type-I interferon response, leading to tumour rejection and induction of immune memory. Our results demonstrate that KDM5B suppresses anti-tumour immunity by epigenetic silencing of retroelements. We therefore reveal roles of KDM5B in heterochromatin regulation and immune evasion in melanoma, opening new paths for the development of KDM5B-targeting and SETDB1-targeting therapies to enhance tumour immunogenicity and overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Wesley L. Cai
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Current address: Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoni Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Durga Thakral
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Lok Hei Chan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Meaghan K. McGeary
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Kim RM Blenman
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA,Department of Medicine, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Goran Micevic
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Shlomit Jessel
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yangyi Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingzhu Yin
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Carmen J. Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lucia B. Jilaveanu
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Harriet M. Kluger
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA,Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA,Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, USA,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marcus W. Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA,Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, USA,Corresponding authors: ,
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA,Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, USA,Corresponding authors: ,
| |
Collapse
|
23
|
The roles of epigenetics in cancer progression and metastasis. Biochem J 2021; 478:3373-3393. [PMID: 34520519 DOI: 10.1042/bcj20210084] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
Cancer metastasis remains a major clinical challenge for cancer treatment. It is therefore crucial to understand how cancer cells establish and maintain their metastatic traits. However, metastasis-specific genetic mutations have not been identified in most exome or genome sequencing studies. Emerging evidence suggests that key steps of metastasis are controlled by reversible epigenetic mechanisms, which can be targeted to prevent and treat the metastatic disease. A variety of epigenetic mechanisms were identified to regulate metastasis, including the well-studied DNA methylation and histone modifications. In the past few years, large scale chromatin structure alterations including reprogramming of the enhancers and chromatin accessibility to the transcription factors were shown to be potential driving force of cancer metastasis. To dissect the molecular mechanisms and functional output of these epigenetic changes, it is critical to use advanced techniques and alternative animal models for interdisciplinary and translational research on this topic. Here we summarize our current understanding of epigenetic aberrations in cancer progression and metastasis, and their implications in developing new effective metastasis-specific therapies.
Collapse
|
24
|
Cha S, Lee E, Won HH. Comprehensive characterization of distinct genetic alterations in metastatic breast cancer across various metastatic sites. NPJ Breast Cancer 2021; 7:93. [PMID: 34272397 PMCID: PMC8285498 DOI: 10.1038/s41523-021-00303-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Metastasis is the major cause of death in breast cancer patients. Although previous large-scale analyses have identified frequently altered genes specific to metastatic breast cancer (MBC) compared with those in primary breast cancer (PBC), metastatic site-specific altered genes in MBC remain largely uncharacterized. Moreover, large-scale analyses are required owing to the low expected frequency of such alterations, likely caused by tumor heterogeneity and late dissemination of breast cancer. To clarify MBC-specific genetic alterations, we integrated publicly available clinical and mutation data of 261 genes, including MBC drivers, from 4268 MBC and 5217 PBC patients from eight different cohorts. We performed meta-analyses and logistic regression analyses to identify MBC-enriched genetic alterations relative to those in PBC across 15 different metastatic site sets. We identified 11 genes that were more frequently altered in MBC samples from pan-metastatic sites, including four genes (SMARCA4, TSC2, ATRX, and AURKA) which were not identified previously. ARID2 mutations were enriched in treatment-naïve de novo and post-treatment MBC samples, compared with that in treatment-naïve PBC samples. In metastatic site-specific analyses, associations of ESR1 with liver metastasis and RICTOR with bone metastasis were significant, regardless of intrinsic subtypes. Among the 15 metastatic site sets, ESR1 mutations were enriched in the liver and depleted in the lymph nodes, whereas TP53 mutations showed an opposite trend. Seven potential MBC driver mutations showed similar preferential enrichment in specific metastatic sites. This large-scale study identified new MBC genetic alterations according to various metastatic sites and highlights their potential role in breast cancer organotropism.
Collapse
Affiliation(s)
- Soojin Cha
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Esak Lee
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Ohguchi H, Park PMC, Wang T, Gryder BE, Ogiya D, Kurata K, Zhang X, Li D, Pei C, Masuda T, Johansson C, Wimalasena VK, Kim Y, Hino S, Usuki S, Kawano Y, Samur MK, Tai YT, Munshi NC, Matsuoka M, Ohtsuki S, Nakao M, Minami T, Lauberth S, Khan J, Oppermann U, Durbin AD, Anderson KC, Hideshima T, Qi J. Lysine Demethylase 5A is Required for MYC Driven Transcription in Multiple Myeloma. Blood Cancer Discov 2021; 2:370-387. [PMID: 34258103 PMCID: PMC8265280 DOI: 10.1158/2643-3230.bcd-20-0108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Daisuke Ogiya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chengkui Pei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Yong Kim
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yawara Kawano
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Mehmet K Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shannon Lauberth
- Division of Biological Sciences, University of Califonia, San Diego, La Jolla, California
| | - Javed Khan
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Structural Genomics Consortium, University of Oxford, Headington, United Kingdom; Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Kumbhar R, Sanchez A, Perren J, Gong F, Corujo D, Medina F, Devanathan SK, Xhemalce B, Matouschek A, Buschbeck M, Buck-Koehntop BA, Miller KM. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J Cell Biol 2021; 220:212163. [PMID: 34003252 PMCID: PMC8135068 DOI: 10.1083/jcb.202006149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)–binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi’s) blocks KDM5A–PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Jullian Perren
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Fade Gong
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain
| | - Frank Medina
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Sravan K Devanathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
27
|
Prominent Role of Histone Modifications in the Regulation of Tumor Metastasis. Int J Mol Sci 2021; 22:ijms22052778. [PMID: 33803458 PMCID: PMC7967218 DOI: 10.3390/ijms22052778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor aggressiveness and progression is highly dependent on the process of metastasis, regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra- and extravasation, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding RNAs participate in the widespread changes of gene expression that characterize the metastatic phenotype. At the chromatin level, active and repressive histone post-translational modifications (PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with the different steps of metastatic process, focusing in particular on the prominent role of histone modifications and the modifying enzymes that mediate transcriptional regulation of genes associated with tumor progression. We further discuss the development of novel treatment strategies targeting the reversibility of histone modifications and highlight their importance in the future of cancer therapy.
Collapse
|
28
|
Yang GJ, Zhu MH, Lu XJ, Liu YJ, Lu JF, Leung CH, Ma DL, Chen J. The emerging role of KDM5A in human cancer. J Hematol Oncol 2021; 14:30. [PMID: 33596982 PMCID: PMC7888121 DOI: 10.1186/s13045-021-01041-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Histone methylation is a key posttranslational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Variations in the pattern of histone methylation influence both physiological and pathological events. Lysine-specific demethylase 5A (KDM5A, also known as JARID1A or RBP2) is a KDM5 Jumonji histone demethylase subfamily member that erases di- and tri-methyl groups from lysine 4 of histone H3. Emerging studies indicate that KDM5A is responsible for driving multiple human diseases, particularly cancers. In this review, we summarize the roles of KDM5A in human cancers, survey the field of KDM5A inhibitors including their anticancer activity and modes of action, and the current challenges and potential opportunities of this field.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China.,Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, People's Republic of China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yan-Jun Liu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, People's Republic of China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, People's Republic of China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China. .,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China. .,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
29
|
Peng D, Lin B, Xie M, Zhang P, Guo Q, Li Q, Gu Q, Yang S, Sen L. Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov 2021; 7:9. [PMID: 33436536 PMCID: PMC7803953 DOI: 10.1038/s41420-020-00396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a primary bone malignancy with a high rate of recurrence and poorer prognosis. Therefore, it is of vital importance to explore novel prognostic molecular biomarkers and targets for more effective therapeutic approaches. Previous studies showed that histone demethylase KDM5A can increase the proliferation and metastasis of several cancers. However, the function of KDM5A in the carcinogenesis of osteosarcoma is not clear. In the current study, KDM5A was highly expressed in osteosarcoma than adjacent normal tissue. Knockdown of KDM5A suppressed osteosarcoma cell proliferation and induced apoptosis. Moreover, knockdown of KDM5A could increase the expression level of P27 (cell-cycle inhibitor) and decrease the expression of Cyclin D1. Furthermore, after knockout of KDM5A in osteosarcoma cells by CRISPR/Cas9 system, the tumor size and growth speed were inhibited in tumor-bearing nude mice. RNA-Seq of KDM5A-KO cells indicated that interferon, epithelial–mesenchymal transition (EMT), IL6/JAK/STAT3, and TNF-α/NF-κB pathway were likely involved in the regulation of osteosarcoma cell viability. Taken together, our research established a role of KDM5A in osteosarcoma tumorigenesis and progression.
Collapse
Affiliation(s)
- Daohu Peng
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Birong Lin
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Mingzhong Xie
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Ping Zhang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - QingXi Guo
- The affiliated hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, 646015, Luzhou City, Sichuan, P. R. China
| | - Qian Li
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Qinwen Gu
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Sijin Yang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| | - Li Sen
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| |
Collapse
|
30
|
Li QM, Li JL, Feng ZH, Lin HC, Xu Q. Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells. Bioengineered 2020; 11:449-462. [PMID: 32208897 PMCID: PMC7161540 DOI: 10.1080/21655979.2020.1743536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells in response to exogenous stimuli. Histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. Previous studies have shown that histone methyltransferases (HMTs) and histone demethylases (HDMs) are crucial for the osteogenic differentiation of human bone marrow, adipose tissue, and tooth tissue. However, little is known about the role of histone methylation in hDPC differentiation. Here, the expression levels of HMTs and HDMs were profiled in hDPCs undergoing odontogenic induction. Among several differentially expressed enzymes, HDM KDM5A demonstrated significantly enhanced expression during cytodifferentiation. Furthermore, KDM5A expression increased during early passages and in a time-dependent manner during odontogenic induction. Using a shRNA-expressing lentivirus, KDM5A was knocked down in hDPCs. KDM5A depletion resulted in greater alkaline phosphatase activity and more mineral deposition formation. Meanwhile, the expression levels of the odontogenic markers DMP1, DSPP, OSX, and OCN were increased by KDM5A knockdown. As a histone demethylase specific for tri- and dimethylated histone H3 at lysine 4 (H3K4me3/me2), KDM5A deficiency led to a significant increment in total H3K4me3 levels, whereas no significant difference was found for H3K4 me2. H3K4me3 levels on the promoters of the odontogenic markers increased after KDM5A knockdown in hDPCs. These results demonstrated that KDM5A is present in hDPCs and inhibits the odontogenic differentiation potentiality of hDPCs by removing H3K4me3 from specific gene promoters, suggesting that KDM5A-dependent histone demethylation may play an important role in reparative dentinogenesis.
Collapse
Affiliation(s)
- Qi-Meng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jin-Ling Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhi-Hui Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Huan-Cai Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Qiong Xu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
31
|
Cai MZ, Wen SY, Wang XJ, Liu Y, Liang H. MYC Regulates PHF8, Which Promotes the Progression of Gastric Cancer by Suppressing miR-22-3p. Technol Cancer Res Treat 2020; 19:1533033820967472. [PMID: 33111613 PMCID: PMC7607725 DOI: 10.1177/1533033820967472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Ming-Zhi Cai
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Shao-Yan Wen
- Comprehensive Surgery Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, People's Republic of China
| | - Xue-Jun Wang
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yong Liu
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Han Liang
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
32
|
McCann TS, Parrish JK, Hsieh J, Sechler M, Sobral LM, Self C, Jones KL, Goodspeed A, Costello JC, Jedlicka P. KDM5A and PHF2 positively control expression of pro-metastatic genes repressed by EWS/Fli1, and promote growth and metastatic properties in Ewing sarcoma. Oncotarget 2020; 11:3818-3831. [PMID: 33196691 PMCID: PMC7597412 DOI: 10.18632/oncotarget.27737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Ewing sarcoma is an aggressive malignant neoplasm with high propensity for metastasis and poor clinical outcomes. The EWS/Fli1 oncofusion is the disease driver in > 90% of cases, but presents a difficult therapeutic target. Moreover, EWS/Fli1 plays a complex role in disease progression, with inhibitory effects on critical steps of metastasis. Like many other pediatric cancers, Ewing sarcoma is a disease marked by epigenetic dysregulation. Epigenetic mechanisms present alternative targeting opportunities, but their contributions to Ewing sarcoma metastasis and disease progression remain poorly understood. Here, we show that the epigenetic regulators KDM5A and PHF2 promote growth and metastatic properties in Ewing sarcoma, and, strikingly, activate expression many pro-metastatic genes repressed by EWS/Fli1. These genes include L1CAM, which is associated with adverse outcomes in Ewing sarcoma, and promotes migratory and invasive properties. KDM5A and PHF2 retain their growth promoting effects in more metastatically potent EWS/Fli1low cells, and PHF2 promotes both invasion and L1CAM expression in this cell population. Furthermore, KDM5A and PHF2 each contribute to the increased metastatic potency of EWS/Fli1low cells in vivo. Together, these studies identify KDM5A and PHF2 as novel disease-promoting factors, and potential new targets, in Ewing sarcoma, including the more metastatically potent EWS/Fli1low cell population.
Collapse
Affiliation(s)
- Tyler S McCann
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Janet K Parrish
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph Hsieh
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Marybeth Sechler
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lays M Sobral
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Chelsea Self
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
33
|
Wang L, Gao Y, Zhang G, Li D, Wang Z, Zhang J, Hermida LC, He L, Wang Z, Si J, Geng S, Ai R, Ning F, Cheng C, Deng H, Dimitrov DS, Sun Y, Huang Y, Wang D, Hu X, Wei Z, Wang W, Liao X. Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade. Sci Transl Med 2020; 12. [DOI: 10.1126/scitranslmed.aax2282] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The bifunctional compound D18 improves checkpoint blockade efficacy by increasing KDM5A and PD-L1 abundance and inducing TLR7/8 activation.
Collapse
Affiliation(s)
- Liangliang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Yan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | - Gao Zhang
- Department of Neurosurgery and The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Dan Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Zhenda Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Department of Computer Science, College of Computing Sciences, New Jersey Institute of Technology, Neswark, NJ 07102, USA
| | - Leandro C. Hermida
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Bioinformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Lei He
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Zhisong Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Jingwen Si
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Shuang Geng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Chemistry, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rizi Ai
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093, USA
| | - Fei Ning
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chaoran Cheng
- Department of Computer Science, College of Computing Sciences, New Jersey Institute of Technology, Neswark, NJ 07102, USA
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yan Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou 730050, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Chemistry, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoyu Hu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhi Wei
- Department of Computer Science, College of Computing Sciences, New Jersey Institute of Technology, Neswark, NJ 07102, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093, USA
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
35
|
Drelon C, Rogers MF, Belalcazar HM, Secombe J. The histone demethylase KDM5 controls developmental timing in Drosophila by promoting prothoracic gland endocycles. Development 2019; 146:dev.182568. [PMID: 31862793 PMCID: PMC6955219 DOI: 10.1242/dev.182568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development. Summary: Identification of KDM5 as a new transcriptional regulator of the MAPK signaling cascade provides insights into the molecular mechanisms governing the regulation of ecdysone production and developmental growth control.
Collapse
Affiliation(s)
- Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael F Rogers
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| |
Collapse
|
36
|
Yin X, Zhou M, Fu Y, Yang L, Xu M, Sun T, Wang X, Huang T, Chen C. Histone demethylase RBP2 mediates the blast crisis of chronic myeloid leukemia through an RBP2/PTEN/BCR-ABL cascade. Cell Signal 2019; 63:109360. [PMID: 31374292 DOI: 10.1016/j.cellsig.2019.109360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
Epigenetic disorders play a key role in tumorigenesis and development, among which histone methylation abnormalities are common. While patients living with chronic myeloid leukemia in the chronic phase (CML-CP) have a good response to TKI, blastic phase (CML-BP) patients demonstrate poor efficacy and high fatality rates. However, while the mechanism of blast crisis of chronic myeloid leukemia remains unclear, high expression and activation of BCR-ABL are usually related to CML blast crisis transition. We found that histone H3 lysine 4 (H3K4) demethylase RBP2 expression is negatively correlated with BCR-ABL expression, which suggests a regulatory link between these two genes. We also discovered that RBP2 mediates the dephosphorylation of BCR-ABL by directly downregulating PTEN expression, depending on histone demethylase activity, while PTEN targets protein phosphatase activity of BCR-ABL, a phosphatase which directly dephosphorylates BCR-ABL. In clinical specimens, the mRNA expression of RBP2 was found to be positively correlated with that of PTEN. These data suggest that the under-expression of RBP2 promotes blast crisis transition by activating an RBP2/PTEN/BCR-ABL cascade.
Collapse
Affiliation(s)
- Xiaolin Yin
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Lin Yang
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Man Xu
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Ting Sun
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Xiaoming Wang
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Tao Huang
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China.
| |
Collapse
|
37
|
Abstract
KDM5 family members (A, B, C and D) that demethylate H3K4me3 have been shown to be involved in human cancers. Here we performed screening for KDM5A inhibitors from chemical libraries using the AlphaScreen method and identified a battery of screening hits that inhibited recombinant KDM5A. These compounds were further subjected to cell-based screening using a reporter gene that responded to KDM5A inhibition and 6 compounds were obtained as candidate inhibitors. When further confirmation of their inhibition activity on cellular KDM5A was made by immunostaining H3K4me3 in KDM5A-overexpressing cells, ryuvidine clearly repressed H3K4me3 demethylation. Ryuvidine prevented generation of gefitinib-tolerant human small-cell lung cancer PC9 cells and also inhibited the growth of the drug-tolerant cells at concentrations that did not affect the growth of parental PC9 cells. Ryuvidine inhibited not only KDM5A but also recombinant KDM5B and C; KDM5B was the most sensitive to the inhibitor. These results warrant that ryuvidine may serve as a lead compound for KDM5 targeted therapeutics.
Collapse
|
38
|
Khodaverdian V, Tapadar S, MacDonald IA, Xu Y, Ho PY, Bridges A, Rajpurohit P, Sanghani BA, Fan Y, Thangaraju M, Hathaway NA, Oyelere AK. Deferiprone: Pan-selective Histone Lysine Demethylase Inhibition Activity and Structure Activity Relationship Study. Sci Rep 2019; 9:4802. [PMID: 30886160 PMCID: PMC6423038 DOI: 10.1038/s41598-019-39214-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022] Open
Abstract
Deferiprone (DFP) is a hydroxypyridinone-derived iron chelator currently in clinical use for iron chelation therapy. DFP has also been known to elicit antiproliferative activities, yet the mechanism of this effect has remained elusive. We herein report that DFP chelates the Fe2+ ion at the active sites of selected iron-dependent histone lysine demethylases (KDMs), resulting in pan inhibition of a subfamily of KDMs. Specifically, DFP inhibits the demethylase activities of six KDMs - 2A, 2B, 5C, 6A, 7A and 7B - with low micromolar IC50s while considerably less active or inactive against eleven KDMs - 1A, 3A, 3B, 4A-E, 5A, 5B and 6B. The KDM that is most sensitive to DFP, KDM6A, has an IC50 that is between 7- and 70-fold lower than the iron binding equivalence concentrations at which DFP inhibits ribonucleotide reductase (RNR) activities and/or reduces the labile intracellular zinc ion pool. In breast cancer cell lines, DFP potently inhibits the demethylation of H3K4me3 and H3K27me3, two chromatin posttranslational marks that are subject to removal by several KDM subfamilies which are inhibited by DFP in cell-free assay. These data strongly suggest that DFP derives its anti-proliferative activity largely from the inhibition of a sub-set of KDMs. The docked poses adopted by DFP at the KDM active sites enabled identification of new DFP-based KDM inhibitors which are more cytotoxic to cancer cell lines. We also found that a cohort of these agents inhibited HP1-mediated gene silencing and one lead compound potently inhibited breast tumor growth in murine xenograft models. Overall, this study identified a new chemical scaffold capable of inhibiting KDM enzymes, globally changing histone modification profiles, and with specific anti-tumor activities.
Collapse
Affiliation(s)
- Verjine Khodaverdian
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Ian A MacDonald
- The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Yuan Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Po-Yi Ho
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Allison Bridges
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pragya Rajpurohit
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bhakti A Sanghani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Yuhong Fan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | | | - Nathaniel A Hathaway
- The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA.
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
39
|
Liu X, Zhang SM, McGeary MK, Krykbaeva I, Lai L, Jansen DJ, Kales SC, Simeonov A, Hall MD, Kelly DP, Bosenberg MW, Yan Q. KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations. Mol Cancer Ther 2019; 18:706-717. [PMID: 30523048 PMCID: PMC6397704 DOI: 10.1158/1535-7163.mct-18-0395] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Tumor heterogeneity is a major challenge for cancer treatment, especially due to the presence of various subpopulations with stem cell or progenitor cell properties. In mouse melanomas, both CD34+p75- (CD34+) and CD34-p75- (CD34-) tumor subpopulations were characterized as melanoma-propagating cells (MPC) that exhibit some of those key features. However, these two subpopulations differ from each other in tumorigenic potential, ability to recapitulate heterogeneity, and chemoresistance. In this study, we demonstrate that CD34+ and CD34- subpopulations carrying the BRAFV600E mutation confer differential sensitivity to targeted BRAF inhibition. Through elevated KDM5B expression, melanoma cells shift toward a more drug-tolerant, CD34- state upon exposure to BRAF inhibitor or combined BRAF inhibitor and MEK inhibitor treatment. KDM5B loss or inhibition shifts melanoma cells to the more BRAF inhibitor-sensitive CD34+ state. These results support that KDM5B is a critical epigenetic regulator that governs the transition of key MPC subpopulations with distinct drug sensitivity. This study also emphasizes the importance of continuing to advance our understanding of intratumor heterogeneity and ultimately develop novel therapeutics by altering the heterogeneous characteristics of melanoma.
Collapse
Affiliation(s)
- Xiaoni Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Ling Lai
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Daniel P Kelly
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
40
|
McCann TS, Sobral LM, Self C, Hsieh J, Sechler M, Jedlicka P. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin Ther Targets 2019; 23:267-280. [PMID: 30759030 DOI: 10.1080/14728222.2019.1580692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Epigenetic mechanisms of gene regulatory control play fundamental roles in developmental morphogenesis, and, as more recently appreciated, are heavily implicated in the onset and progression of neoplastic disease, including cancer. Many epigenetic mechanisms are therapeutically targetable, providing additional incentive for understanding of their contribution to cancer and other types of neoplasia. Areas covered: The Jumonji-domain histone demethylase (JHDM) family exemplifies many of the above traits. This review summarizes the current state of knowledge of the functions and pharmacologic targeting of JHDMs in cancer and other neoplastic processes, with an emphasis on diseases affecting the pediatric population. Expert opinion: To date, the JHDM family has largely been studied in the context of normal development and adult cancers. In contrast, comparatively few studies have addressed JHDM biology in cancer and other neoplastic diseases of childhood, especially solid (non-hematopoietic) neoplasms. Encouragingly, the few available examples support important roles for JHDMs in pediatric neoplasia, as well as potential roles for JHDM pharmacologic inhibition in disease management. Further investigations of JHDMs in cancer and other types of neoplasia of childhood can be expected to both enlighten disease biology and inform new approaches to improve disease outcomes.
Collapse
Affiliation(s)
- Tyler S McCann
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Lays M Sobral
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Chelsea Self
- b Department of Pediatrics , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Joseph Hsieh
- c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Marybeth Sechler
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Paul Jedlicka
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
41
|
Yang GJ, Ko CN, Zhong HJ, Leung CH, Ma DL. Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:E92. [PMID: 30650517 PMCID: PMC6360022 DOI: 10.3390/cancers11010092] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the one of the most frequent causes of female cancer mortality. KDM5A, a histone demethylase, can increase the proliferation, metastasis, and drug resistance of cancers, including breast cancer, and is thus an important therapeutic target. In the present work, we performed hierarchical virtual screening towards the KDM5A catalytic pocket from a chemical library containing 90,000 compounds. Using multiple biochemical methods, the cyclopenta[c]chromen derivative 1 was identified as the top candidate for KDM5A demethylase inhibitory activity. Compared with the well-known KDM5 inhibitor CPI-455 (18), 1 exhibited higher potency against KDM5A and much higher selectivity for KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C). Additionally, compound 1 repressed the proliferation of various KDM5A-overexpressing breast cancer cell lines. Mechanistically, 1 promoted accumulation of p16 and p27 by blocking KDM5A-mediated H3K4me3 demethylation, leading to cell cycle arrest and senescence. To date, compound 1 is the first cyclopenta[c]chromen-based KDM5A inhibitor reported, and may serve as a novel motif for developing more selective and efficacious pharmacological molecules targeting KDM5A. In addition, our research provides a possible anti-cancer mechanism of KDM5A inhibitors and highlights the feasibility and significance of KDM5A as a therapeutic target for KDM5A-overexpressing breast cancer.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| |
Collapse
|
42
|
Horton JR, Woodcock CB, Chen Q, Liu X, Zhang X, Shanks J, Rai G, Mott BT, Jansen DJ, Kales SC, Henderson MJ, Cyr M, Pohida K, Hu X, Shah P, Xu X, Jadhav A, Maloney DJ, Hall MD, Simeonov A, Fu H, Vertino PM, Cheng X. Structure-Based Engineering of Irreversible Inhibitors against Histone Lysine Demethylase KDM5A. J Med Chem 2018; 61:10588-10601. [PMID: 30392349 PMCID: PMC6467790 DOI: 10.1021/acs.jmedchem.8b01219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The active sites of hundreds of human α-ketoglutarate (αKG) and Fe(II)-dependent dioxygenases are exceedingly well preserved, which challenges the design of selective inhibitors. We identified a noncatalytic cysteine (Cys481 in KDM5A) near the active sites of KDM5 histone H3 lysine 4 demethylases, which is absent in other histone demethylase families, that could be explored for interaction with the cysteine-reactive electrophile acrylamide. We synthesized analogs of a thienopyridine-based inhibitor chemotype, namely, 2-((3-aminophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2- b]pyridine-7-carboxylic acid (N70) and a derivative containing a (dimethylamino)but-2-enamido)phenyl moiety (N71) designed to form a covalent interaction with Cys481. We characterized the inhibitory and binding activities against KDM5A and determined the cocrystal structures of the catalytic domain of KDM5A in complex with N70 and N71. Whereas the noncovalent inhibitor N70 displayed αKG-competitive inhibition that could be reversed after dialysis, inhibition by N71 was dependent on enzyme concentration and persisted even after dialysis, consistent with covalent modification.
Collapse
Affiliation(s)
- John R. Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Clayton B. Woodcock
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Qin Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - John Shanks
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Daniel J. Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew Cyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Haian Fu
- Departments of Pharmacology, Emory University, Atlanta, Georgia 30322, United States
- Hematology and Medical Oncology, Emory University, Atlanta, Georgia 30322, United States
- Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, United States
- The Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Paula M. Vertino
- The Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
- Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322, United States
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Paroni G, Bolis M, Zanetti A, Ubezio P, Helin K, Staller P, Gerlach LO, Fratelli M, Neve RM, Terao M, Garattini E. HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene 2018; 38:2675-2689. [DOI: 10.1038/s41388-018-0620-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
|
44
|
Hu D, Jablonowski C, Cheng PH, AlTahan A, Li C, Wang Y, Palmer L, Lan C, Sun B, Abu-Zaid A, Fan Y, Brimble M, Gamboa NT, Kumbhar RC, Yanishevski D, Miller KM, Kang G, Zambetti GP, Chen T, Yan Q, Davidoff AM, Yang J. KDM5A Regulates a Translational Program that Controls p53 Protein Expression. iScience 2018; 9:84-100. [PMID: 30388705 PMCID: PMC6214872 DOI: 10.1016/j.isci.2018.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/01/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
The p53 tumor suppressor pathway is frequently inactivated in human cancers. However, there are some cancer types without commonly recognized alterations in p53 signaling. Here we report that histone demethylase KDM5A is involved in the regulation of p53 activity. KDM5A is significantly amplified in multiple types of cancers, an event that tends to be mutually exclusive to p53 mutation. We show that KDM5A acts as a negative regulator of p53 signaling through inhibition of p53 translation via suppression of a subgroup of eukaryotic translation initiation genes. Genetic deletion of KDM5A results in upregulation of p53 in multiple lineages of cancer cells and inhibits tumor growth in a p53-dependent manner. In addition, we have identified a regulatory loop between p53, miR-34, and KDM5A, whereby the induction of miR-34 leads to suppression of KDM5A. Thus, our findings reveal a mechanism by which KDM5A inhibits p53 translation to modulate cancer progression.
Collapse
Affiliation(s)
- Dongli Hu
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Carolyn Jablonowski
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Pei-Hsin Cheng
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alaa AlTahan
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yingdi Wang
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lance Palmer
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Cuixia Lan
- Department of Clinical Laboratory, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao 266033, China
| | - Bingmei Sun
- Department of Clinical Laboratory, Qingdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao 266042, China
| | - Ahmed Abu-Zaid
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Brimble
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nicolas T Gamboa
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ramhari C Kumbhar
- Department of Molecular Biosciences, University of Texas at Austin, 100 E 24th St NHB 2.606 Stop A5000, Austin, TX 78712, USA
| | - David Yanishevski
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, 100 E 24th St NHB 2.606 Stop A5000, Austin, TX 78712, USA
| | - Guolian Kang
- Department of Biostatistics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, 310 Cedar St, New Haven, CT 06520, USA
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
45
|
Plch J, Hrabeta J, Eckschlager T. KDM5 demethylases and their role in cancer cell chemoresistance. Int J Cancer 2018; 144:221-231. [PMID: 30246379 DOI: 10.1002/ijc.31881] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Histone methylation is important in the regulation of genes expression, and thus its dysregulation has been observed in various cancers. KDM5 enzymes are capable of removing tri- and di- methyl marks from lysine 4 on histone H3 (H3K4) which makes them potential players in the downregulation of tumor suppressors, but could also suggest that their activity repress oncogenes. Depending on the methylation site, their effect on transcription can be either activating or repressing. There is emerging evidence for deregulation of KDM5A/B/C/D and important phenotypic consequences in various types of cancer. It has been suggested that the KDM5 family of demethylases plays a role in the appearance of drug tolerance. Drug resistance remains a challenge to successful cancer treatment. This review summarizes recent advances in understanding the functions of KDM5 histone demethylases in cancer chemoresistance and potential therapeutic targeting of these enzymes, which seems to prevent the emergence of a drug-resistant population.
Collapse
Affiliation(s)
- Johana Plch
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
46
|
Yang G, Wang W, Mok SWF, Wu C, Law BYK, Miao X, Wu K, Zhong H, Wong C, Wong VKW, Ma D, Leung C. Selective Inhibition of Lysine‐Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Triple‐Negative Breast Cancer Therapy. Angew Chem Int Ed Engl 2018; 57:13091-13095. [DOI: 10.1002/anie.201807305] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Guan‐Jun Yang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Wanhe Wang
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Chun Wu
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Xiang‐Min Miao
- School of Life ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Ke‐Jia Wu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Hai‐Jing Zhong
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Chun‐Yuen Wong
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Hong Kong SAR P. R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Chung‐Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| |
Collapse
|
47
|
Wu L, Cao J, Cai WL, Lang SM, Horton JR, Jansen DJ, Liu ZZ, Chen JF, Zhang M, Mott BT, Pohida K, Rai G, Kales SC, Henderson MJ, Hu X, Jadhav A, Maloney DJ, Simeonov A, Zhu S, Iwasaki A, Hall MD, Cheng X, Shadel GS, Yan Q. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol 2018; 16:e2006134. [PMID: 30080846 PMCID: PMC6095604 DOI: 10.1371/journal.pbio.2006134] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/16/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - John R. Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Daniel J. Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zongzhi Z. Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jocelyn F. Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Meiling Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gerald S. Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
48
|
Yang G, Wang W, Mok SWF, Wu C, Law BYK, Miao X, Wu K, Zhong H, Wong C, Wong VKW, Ma D, Leung C. Selective Inhibition of Lysine‐Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Triple‐Negative Breast Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guan‐Jun Yang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Wanhe Wang
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Chun Wu
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Xiang‐Min Miao
- School of Life ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Ke‐Jia Wu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Hai‐Jing Zhong
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Chun‐Yuen Wong
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Hong Kong SAR P. R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Chung‐Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| |
Collapse
|
49
|
Bhushan B, Erdmann A, Zhang Y, Belle R, Johannson C, Oppermann U, Hopkinson RJ, Schofield CJ, Kawamura A. Investigations on small molecule inhibitors targeting the histone H3K4 tri-methyllysine binding PHD-finger of JmjC histone demethylases. Bioorg Med Chem 2018; 26:2984-2991. [PMID: 29764755 PMCID: PMC6380468 DOI: 10.1016/j.bmc.2018.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
Plant homeodomain (PHD) containing proteins are important epigenetic regulators and are of interest as potential drug targets. Inspired by the amiodarone derivatives reported to inhibit the PHD finger 3 of KDM5A (KDM5A(PHD3)), a set of compounds were synthesised. Amiodarone and its derivatives were observed to weakly disrupt the interactions of a histone H3K4me3 peptide with KDM5A(PHD3). Selected amiodarone derivatives inhibited catalysis of KDM5A, but in a PHD-finger independent manner. Amiodarone derivatives also bind to H3K4me3-binding PHD-fingers from the KDM7 subfamily. Further work is required to develop potent and selective PHD finger inhibitors.
Collapse
Affiliation(s)
- Bhaskar Bhushan
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom; Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Alexandre Erdmann
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yijia Zhang
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Roman Belle
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Catrine Johannson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom
| | - Richard J Hopkinson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Akane Kawamura
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom; Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
50
|
The Histone Demethylase KDM5 Is Essential for Larval Growth in Drosophila. Genetics 2018; 209:773-787. [PMID: 29764901 PMCID: PMC6028249 DOI: 10.1534/genetics.118.301004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Regulated gene expression is necessary for developmental and homeostatic processes. The KDM5 family of transcriptional regulators are histone H3 lysine 4 demethylases that can function through both demethylase-dependent and -independent mechanisms. While loss and overexpression of KDM5 proteins are linked to intellectual disability and cancer, respectively, their normal developmental functions remain less characterized. Drosophila melanogaster provides an ideal system to investigate KDM5 function, as it encodes a single ortholog in contrast to the four paralogs found in mammalian cells. To examine the consequences of complete loss of KDM5, we generated a null allele of Drosophila kdm5, also known as little imaginal discs (lid), and show that it is essential for viability. Animals lacking KDM5 show a dramatically delayed larval development that coincides with decreased proliferation and increased cell death in wing imaginal discs. Interestingly, this developmental delay is independent of the well-characterized Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, suggesting key functions for less characterized domains. Consistent with the phenotypes observed, transcriptome analyses of kdm5 null mutant wing imaginal discs revealed the dysregulation of genes involved in several cellular processes, including cell cycle progression and DNA repair. Together, our analyses reveal KDM5 as a key regulator of larval growth and offer an invaluable tool for defining the biological activities of KDM5 family proteins.
Collapse
|