1
|
Huang PH, Yang TY, Yeh CW, Huang SM, Chang HC, Hung YF, Chu WC, Cho KH, Lu TP, Kuo PH, Lee LJ, Kuo LW, Lien CC, Cheng HJ. Involvement of a BH3-only apoptosis sensitizer gene Blm-s in hippocampus-mediated mood control. Transl Psychiatry 2022; 12:411. [PMID: 36163151 PMCID: PMC9512807 DOI: 10.1038/s41398-022-02184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Mood disorders are an important public health issue and recent advances in genomic studies have indicated that molecules involved in neurodevelopment are causally related to mood disorders. BLM-s (BCL-2-like molecule, small transcript isoform), a BH3-only proapoptotic BCL-2 family member, mediates apoptosis of postmitotic immature neurons during embryonic cortical development, but its role in the adult brain is unknown. To better understand the physiological role of Blm-s gene in vivo, we generated a Blm-s-knockout (Blm-s-/-) mouse. The Blm-s-/- mice breed normally and exhibit grossly normal development. However, global depletion of Blm-s is highly associated with depression- and anxiety-related behaviors in adult mutant mice with intact learning and memory capacity. Functional magnetic resonance imaging of adult Blm-s-/- mice reveals reduced connectivity mainly in the ventral dentate gyrus (vDG) of the hippocampus with no alteration in the dorsal DG connectivity and in total hippocampal volume. At the cellular level, BLM-s is expressed in DG granule cells (GCs), and Blm-s-/- mice show reduced dendritic complexity and decreased spine density in mature GCs. Electrophysiology study uncovers that mature vGCs in adult Blm-s-/- DG are intrinsically more excitable. Interestingly, certain genetic variants of the human Blm homologue gene (VPS50) are significantly associated with depression traits from publicly resourced UK Biobank data. Taken together, BLM-s is required for the hippocampal mood control function. Loss of BLM-s causes abnormality in the electrophysiology and morphology of GCs and a disrupted vDG neural network, which could underlie Blm-s-null-associated anxiety and depression.
Collapse
Affiliation(s)
- Pei-Hsin Huang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan. .,Department of Pathology, National Taiwan University Hospital, 100, Taipei, Taiwan.
| | - Tsung-Ying Yang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, 112, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 350, Miaoli, Taiwan
| | - Ho-Ching Chang
- Institute of Molecular Biology, Academia Sinica, 115, Taipei, Taiwan
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, 115, Taipei, Taiwan
| | - Wen-Chia Chu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 350, Miaoli, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 100, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 100, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, 100, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 350, Miaoli, Taiwan.,Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, 112, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 112, Taipei, Taiwan
| | - Hwai-Jong Cheng
- Institute of Molecular Biology, Academia Sinica, 115, Taipei, Taiwan
| |
Collapse
|
2
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
3
|
Li J, Fang Y, Zhang Y, Wang H, Yang Z, Ding D. Supramolecular Self-Assembly-Facilitated Aggregation of Tumor-Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008518. [PMID: 33734518 DOI: 10.1002/adma.202008518] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Supramolecular self-assembling peptide systems are attracting increasing interest in the field of cancer theranostics. Additionally, transformation of the immunologically cold tumor microenvironment into hot is of great importance for obtaining high antitumor responses for most immunotherapies. However, as far as it is known, there are nearly no studies on self-assembling peptides reported to be able to convert cold to hot tumors. Herein, a self-assembling peptide-based cancer theranostic agent (named DBT-2FFGYSA) is designed and synthesized, which can target tumor-specific transmembrane Eph receptor A2 (EphA2) receptors selectively and make the receptors form large aggregates. Such aggregate formation promotes the cross-phosphorylations among EphA2 receptors, leading to signal transduction of antitumor pathway. As a consequence, DBT-2FFGYSA can not only visualize EphA2 receptors in a fluorescence turn-on manner, but also specifically suppress the EphA2 receptor-overexpressed cancer cell proliferation and tumor growth. What is more, DBT-2FFGYSA also serves as an effective agent to convert immunologically cold tumors to hot by inducing the immunogenic cell death of EphA2 receptor-overexpressed cancer cells and recruiting massive tumor-infiltrating T cells. This study, thus, introduces a new category of agents capable of converting cold to hot tumors by pure supramolecular self-assembly without any aid of known anticancer drugs.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yufan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
4
|
Nuclear immunoreactivity of BLM-s, a proapoptotic BCL-2 family member, is specifically detected in salivary adenoid cystic carcinoma. Hum Pathol 2018; 84:81-91. [PMID: 30261190 DOI: 10.1016/j.humpath.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022]
Abstract
Tumor cells frequently evade apoptosis triggered by cellular stress via aberrant regulation of the BCL-2 family members, which are key players in regulating cell death under physiological and pathological situations. Previously, we have identified a novel BH3-only protein of the BCL-2 family, BLM-s (BCL-2-like molecule, short form), that modulates apoptosis of postmitotic immature neurons during corticohistogenesis. Whether BLM-s expression correlates with any subtype of human tumors has not been investigated. Here, via BLM-s immunohistochemistry performed in various kinds of human tumors, we demonstrate that BLM-s is specifically expressed in tumors derived from salivary gland (specificity, 0.76 [95% confidence interval, or CI], 0.65-0.85]; sensitivity, 1 [95% CI, 0.99-1]). Stratification of BLM-s immunointensity and its subcellular localization in correlation with salivary gland tumor subtype shows a statistically significant increase in proportion and in intensity of nuclear staining for adenoid cystic carcinoma (ACC; specificity, 0.92 [95% CI, 0.88-0.95]; sensitivity, 0.82 [95% CI, 0.66-0.92]), a locally aggressive head and neck malignancy. Comparison among salivary ACC in correlation with MYB/MYBL fluorescence in situ hybridization, c-KIT immunohistochemistry, and BLM-s immunohistochemistry shows that BLM-s' nuclear immunoreactivity has lower false-negative detection rate (18.5% compared with 26.3% [MYB/MYBL fluorescence in situ hybridization] and 34.2% [c-KIT], respectively). Intriguingly, ACC derived from other cell origins such as breast shows negative BLM-s immunoreactivity. We thus propose that nuclear localization of BLM-s detected by immunohistochemistry could be potentially used as an ancillary diagnostic marker for ACC originating from the salivary gland, especially when the biopsy specimen is small with an unknown tumor origin.
Collapse
|
5
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 726] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
6
|
Wang Y, Liu Y, Hu C, Ni X, Huang X. Tumor necrosis factor α-induced protein 8-like 1 promotes apoptosis by regulating B-cell leukemia/lymphoma-2 family proteins in RAW264.7 cells. Oncol Lett 2016; 12:3506-3512. [PMID: 27900028 DOI: 10.3892/ol.2016.5090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/19/2016] [Indexed: 01/18/2023] Open
Abstract
Although the newly identified protein tumor necrosis factor α-induced protein 8-like 1 (TNFAIP8L1), also known as TIPE1, has been reported to be able to induce apoptosis in human hepatocellular carcinoma cells, the involvement of TIPE1 in apoptosis remains to be elucidated. The present study investigated the pro-apoptotic effect of TIPE1 in an murine macrophage cell line, RAW264.7. The cell apoptosis rate was detected by flow cytometry. The results revealed that overexpressed TIPE1 could directly enhance the apoptosis and the cisplatin-induced cell death of RAW264.7 cells in vitro. Meanwhile, TIPE1 overexpression could suppress tumor growth in vivo. Furthermore, western blotting revealed that overexpressed TIPE1 could upregulate the expression of B-cell leukemia/lymphoma (Bcl)-2 associated X protein (Bax), Bcl-2 interacting killer (Bik) and p53 upregulated modulator of apoptosis (Puma), and activate the mitogen activated protein kinases (MAPKs) signaling pathway. However, western blotting demonstrated that inhibitors of the MAPKs pathway could not decrease the expression of Bax, Bik or Puma. These results indicated that TIPE1 could promote the apoptosis of RAW264.7 cells by upregulating the pro-apoptotic members of the Bcl-2 family of proteins, and that the MAPKs signaling pathway was not involved in the pro-apoptotic effect of TIPE1.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yao Liu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Chunfang Hu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiaoyan Ni
- Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaobo Huang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|