1
|
Zhou N, Guo C, Li X, Tu L, Du J, Qian Q, Li J, Huang D, Xu Q, Zheng X. USP24 promotes hepatocellular carcinoma tumorigenesis through deubiquitinating and stabilizing TRAF2. Biochem Pharmacol 2024; 229:116473. [PMID: 39127151 DOI: 10.1016/j.bcp.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Ubiquitin-specific peptidase 24 (USP24), a member of the deubiquitinase family, plays an important role in tumor regulation. However, the role of USP24 in Hepatocellular carcinoma(HCC)is unknown. The aim of our study was to explore the role of USP24 in HCC to seek new therapeutic targets for HCC. In this study, we found that USP24 was aberrantly upregulated in HCC tissues and predicted poor prognosis. USP24 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, USP24 binds to tumor necrosis factor receptor-associated factor 2(TRAF2) and inhibits its degradation, thereby promoting the accumulation of TRAF2. Upregulation of TRAF2 activated protein kinase B/nuclear factor kappa-B (AKT/ NF-κB) signaling pathway and promoted HCC cell survival. In addition, USP24 positively correlated with programmed cell death ligand 1(PD-L1) expression in HCC, highlighting the clinical significance of USP24 activation in tumor immune evasion. Deletion of USP24 enhanced the tumor-killing ability of CD8+ T cells. Deletion of USP24 combined with anti-PD-1 antibody significantly enhanced the efficacy of HCC immunotherapy. Taken together, USP24 can be employed as a promising target to restrain tumor growth and increase the efficacy of HCC immunotherapy.
Collapse
Affiliation(s)
- Nana Zhou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Chaoqin Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Xiangyu Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou,310053, China.
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou,310053, China.
| | - Jingyang Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Qiyi Qian
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Juejiashan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou,310053, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Wang S, Wu Y, Yang F, Hsu F, Zhang K, Hung J. NCI677397 targeting USP24-mediated induction of lipid peroxidation induces ferroptosis in drug-resistant cancer cells. Mol Oncol 2024; 18:2255-2276. [PMID: 38140768 PMCID: PMC11467797 DOI: 10.1002/1878-0261.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer represents a profound challenge to healthcare systems and individuals worldwide. The development of multiple drug resistance is a major problem in cancer therapy and can result in progression of the disease. In our previous studies, we developed small-molecule inhibitors targeting ubiquitin-specific peptidase 24 (USP24) to combat drug-resistant lung cancer. Recently, we found that the USP24 inhibitor NCI677397 induced ferroptosis, a type of programmed cell death, in drug-resistant cancer cells by increasing lipid reactive oxygen species (ROS) levels. In the present study, we investigated the molecular mechanisms and found that the targeting of USP24 by NCI677397 increased gene expression of most lipogenesis-related genes, such as acyl-CoA synthetase long-chain family member 4 (ACSL4), and activated autophagy. In addition, the activity of several antioxidant enzymes, such as glutathione peroxidase 4 (GPX4) and dihydrofolate reductase (DHFR), was inhibited by NCI677397 treatment via an increase in protein degradation, thereby inducing lipid ROS production and lipid peroxidation. In summary, we demonstrated that NCI677397 induced a marked increase in lipid ROS levels, subsequently causing lipid peroxidation and leading to the ferroptotic death of drug-resistant cancer cells. Our study provides new insights into the clinical use of USP24 inhibitors as ferroptosis inducers (FINs) to block drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Shao‐An Wang
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Yu‐Chih Wu
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Feng‐Ming Yang
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Feng‐Lin Hsu
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Kuan Zhang
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
| | - Jan‐Jong Hung
- Department of Biotechnology and Bioindustry SciencesNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
3
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
5
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
6
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
7
|
Pei HZ, Peng Z, Zhuang X, Wang X, Lu B, Guo Y, Zhao Y, Zhang D, Xiao Y, Gao T, Yu L, He C, Wu S, Baek SH, Zhao ZJ, Xu X, Chen Y. miR-221/222 induce instability of p53 By downregulating deubiquitinase YOD1 in acute myeloid leukemia. Cell Death Discov 2023; 9:249. [PMID: 37454155 DOI: 10.1038/s41420-023-01537-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the impaired differentiation and uncontrolled proliferation of myeloid blasts. Tumor suppressor p53 is often downregulated in AML cells via ubiquitination-mediated degradation. While the role of E3 ligase MDM2 in p53 ubiquitination is well-accepted, little is known about the involvement of deubiquitinases (DUBs). Herein, we found that the expression of YOD1, among several DUBs, is substantially reduced in blood cells from AML patients. We identified that YOD1 deubiqutinated and stabilized p53 through interaction via N-terminus of p53 and OTU domain of YOD1. In addition, expression levels of YOD1 were suppressed by elevated miR-221/222 in AML cells through binding to the 3' untranslated region of YOD1, as verified by reporter gene assays. Treatment of cells with miR-221/222 mimics and inhibitors yielded the expected effects on YOD1 expressions, in agreement with the negative correlation observed between the expression levels of miR-221/222 and YOD1 in AML cells. Finally, overexpression of YOD1 stabilized p53, upregulated pro-apoptotic p53 downstream genes, and increased the sensitivity of AML cells to FLT3 inhibitors remarkably. Collectively, our study identified a pathway connecting miR-221/222, YOD1, and p53 in AML. Targeting miR-221/222 and stimulating YOD1 activity may improve the therapeutic effects of FLT3 inhibitors in patients with AML.
Collapse
Affiliation(s)
- Han Zhong Pei
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Xiaomei Zhuang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Dengyang Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yunjun Xiao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Tianshun Gao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Chunxiao He
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea.
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK, 73104, USA.
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
8
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Chen Y, Tan S, Fu J. Modified Metabolism and Response to UV Radiation: Gene Expression Variations Along an Elevational Gradient in the Asiatic Toad (Bufo gargarizans). J Mol Evol 2022; 90:389-399. [PMID: 36029325 DOI: 10.1007/s00239-022-10070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
High-elevation adaptation provides an excellent system for examining adaptive evolution, and adaptive variations may manifest at gene expression or any other phenotypic levels. We examined gene expression profiles of Asiatic toads (Bufo gargarizans) along an elevational gradient from both wild and common-garden acclimated populations. Asiatic toads originated from high altitudes have distinctive gene expression patterns. We identified 18 fixed differentially expressed genes (DEGs), which are different in both wild and acclimated samples, and 1217 plastic DEGs, which are different among wild samples. The expression levels of most genes were linearly correlated with altitude gradient and down-regulated in high-altitude populations. Expression variations of several genes associated with metabolic process are fixed, and we also identified a co-expression module that is significantly different between acclimated populations and has functions related to DNA repair. The differential expression of the vast majority genes, however, are due to phenotypic plasticity, revealing the highly plastic nature of gene expression variations. Expression modification of some specific genes related to metabolism and response to UV radiation play crucial role in adaptation to high altitude for Asiatic toads. Common-garden experiments are essential for evaluating adaptive evolution of natural populations.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
- The University of Chinese Academy of Science, Beijing, China.
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The University of Chinese Academy of Science, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
10
|
Li ZD, Rong L, He YJ, Ji YZ, Li X, Song FZ, Li XA. Exome analysis for Cronkhite-Canada syndrome: A case report. World J Clin Cases 2022; 10:8634-8640. [PMID: 36157825 PMCID: PMC9453354 DOI: 10.12998/wjcc.v10.i24.8634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/11/2021] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cronkhite-Canada syndrome (CCS) is a rare, non-genetic disorder characterized by multiple gastrointestinal polyps, and ectodermal lesions such as alopecia, fingernail atrophy, and skin mucosal pigmentation. Unfortunately, the pathogenesis of CCS is currently unknown.
CASE SUMMARY Here, we describe the case of an elderly female with diarrhea, fatigue, and hair loss, who experienced abdominal pain for over half a year and was found to have multiple gastrointestinal polyps. She was diagnosed with CCS and was treated with albumin supplementation and prednisone, and her electrolyte imbalance was corrected. Following treatment, her symptoms significantly improved. To elucidate the role of potential genetic events in the pathogenesis of CCS, we performed exome sequencing using an extract of her colorectal adenoma.
CONCLUSION Our data revealed multiple somatic mutations and copy number variations. Our findings provide a novel insight into the potential mechanisms of CCS etiology.
Collapse
Affiliation(s)
- Zhao-Dong Li
- Department of Gastroenterology, Mianyang Central Hospital, Mianyang Central Hospital, Mianyang 621000, Sichuan Province, China
- Basic Medicine College, Chongqing Medical University, Chongqing Medical University, Chongqing 410000, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University/Bishan Hospital of Chongqing, Chongqing 402760, Sichuan Province, China
| | - Yuan-Jing He
- Department of Gastroenterology, Mianyang Central Hospital, Mianyang Central Hospital, Mianyang 621000, Sichuan Province, China
| | - Yu-Zhu Ji
- Department of Pathology, Mianyang Central Hospital, Mianyang 621000, Sichuan Province, China
| | - Xiang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 410000, China
| | - Fang-Zhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing City 410000, China
| | - Xiao-An Li
- Department of Gastroenterology, Mianyang Central Hospital, Mianyang Central Hospital, Mianyang 621000, Sichuan Province, China
| |
Collapse
|
11
|
Ge F, Li Y, Yuan T, Wu Y, He Q, Yang B, Zhu H. Deubiquitinating enzymes: promising targets for drug resistance. Drug Discov Today 2022; 27:2603-2613. [DOI: 10.1016/j.drudis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
|
12
|
Wang SA, Young MJ, Wang YC, Chen SH, Liu CY, Lo YA, Jen HH, Hsu KC, Hung JJ. USP24 promotes drug resistance during cancer therapy. Cell Death Differ 2021; 28:2690-2707. [PMID: 33846536 PMCID: PMC8408266 DOI: 10.1038/s41418-021-00778-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
Drug resistance has remained an important issue in the treatment and prevention of various diseases, including cancer. Herein, we found that USP24 not only repressed DNA-damage repair (DDR) activity by decreasing Rad51 expression to cause the tumor genomic instability and cancer stemness, but also increased the levels of the ATP-binding cassette (ABC) transporters P-gp, ABCG2, and ezrin to enhance the pumping out of Taxol from cancer cells, thus resulted in drug resistance during cancer therapy. A novel USP24 inhibitor, NCI677397, was screened for specific inhibiting the catalytic activity of USP24. This inhibitor was identified to suppress drug resistance via decreasing genomic instability, cancer stemness, and the pumping out of drugs from cancer cells. Understanding the role and molecular mechanisms of USP24 in drug resistance will be beneficial for the future development of a novel USP24 inhibitor. Our studies provide a new insight of USP24 inhibitor for clinically implication of blocking drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Shao-An Wang
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ,grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Young
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chang Wang
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Hui Chen
- grid.64523.360000 0004 0532 3255Department of Chemistry, College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-An Lo
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Hsiang Jen
- grid.64523.360000 0004 0532 3255Department of Chemistry, College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Cheng Hsu
- grid.412896.00000 0000 9337 0481Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
He H, Yi L, Zhang B, Yan B, Xiao M, Ren J, Zi D, Zhu L, Zhong Z, Zhao X, Jin X, Xiong W. USP24-GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway. Int J Biol Sci 2021; 17:2417-2429. [PMID: 34326684 PMCID: PMC8315027 DOI: 10.7150/ijbs.54442] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Bladder cancer is the fourth and tenth most common malignancy in men and women worldwide, respectively. One of the main reasons for the unsatisfactory therapeutic control of bladder cancer is that the molecular biological mechanism of bladder cancer is complex. Gasdermin B (GSDMB) is one member of the gasdermin family and participates in the regulation of cell pyroptosis. The role of GSDMB in bladder cancer has not been studied to date. Methods: TCGA database was used to exam the clinical relevance of GSDMB. Functional assays such as MTT assay, Celigo fluorescent cell-counting assay, Annexin V-APC assay and xenografts were used to evaluate the biological role of GSDMB in bladder cancer. Mass spectrometry and immunoprecipitation were used to detect the protein interaction between GSDMB and STAT3, or GSDMB and USP24. Western blot and immunohistochemistry were used to study the relationship between USP24, GSDMB and STAT3. Results: In this study, bioinformatics analysis indicated that the mRNA expression level of GSDMB in bladder cancer tissues was higher than that in adjacent normal tissues. Then, we showed that GSDMB promoted bladder cancer progression. Furthermore, we demonstrated that GSDMB interacted with STAT3 to increase the phosphorylation of STAT3 and modulate the glucose metabolism and promote tumor growth in bladder cancer cells. Besides, we also showed that USP24 stabilized GSDMB to activate STAT3 signaling, which was blocked by the USP24 inhibitor. Conclusions: We suggested that aberrantly up-regulated GSDMB was responsible for enhancing the growth and invasion ability of bladder cancer cells. Then, we showed that GSDMB could bind to STAT3 and activate STAT3 signaling in bladder cancer. Furthermore, we also demonstrated that USP24 interacted with GSDMB and prevented GSDMB from degradation in bladder cancer cells. Therefore, the USP24/GSDMB/STAT3 axis may be a new targetable signaling pathway for bladder cancer treatment.
Collapse
Affiliation(s)
- Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Lu Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Bin Zhang
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Ming Xiao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Jiannan Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Dong Zi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Zhaohui Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
14
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
15
|
Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int J Mol Sci 2021; 22:ijms22094546. [PMID: 33925279 PMCID: PMC8123678 DOI: 10.3390/ijms22094546] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.
Collapse
|
16
|
Withaferin A-A Promising Phytochemical Compound with Multiple Results in Dermatological Diseases. Molecules 2021; 26:molecules26092407. [PMID: 33919088 PMCID: PMC8122412 DOI: 10.3390/molecules26092407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Withaferin A (WFA) was identified as the most active phytocompound of the plant Withania somnifera (WS) and as having multiple therapeutic/ameliorating properties (anticancer, antiangiogenic, anti-invasive, anti-inflammatory, proapoptotic, etc.) in case of various diseases. In drug chemistry, WFA in silico approaches have identified favorite biological targets, stimulating and accelerating research to evaluate its pharmacological activity—numerous anticancer effects manifested in various organs (breast, pancreas, skin, colon, etc.), antivirals, anti-infective, etc., which are not yet sufficiently explored. This paper is a synthesis of the most relevant specialized papers in the field that are focused on the use of WFA in dermatological diseases, describing its mechanism of action while providing, at the same time, details about the results of its testing in in vitro/in vivo studies.
Collapse
|
17
|
Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel) 2021; 12:genes12040539. [PMID: 33918002 PMCID: PMC8068402 DOI: 10.3390/genes12040539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
Inducing apoptosis is an effective treatment for cancer. Conventional cytotoxic anticancer agents induce apoptosis primarily through activation of tumor suppressor p53 by causing DNA damage and the resulting regulation of B-cell leukemia/lymphoma-2 (BCL-2) family proteins. Therefore, the effects of these agents are limited in cancers where p53 loss-of-function mutations are common, such as triple-negative breast cancer (TNBC). Here, we demonstrate that ultraviolet (UV) light-induced p53-independent transcriptional activation of NOXA, a proapoptotic factor in the BCL-2 family, results in apoptosis induction. This UV light-induced NOXA expression was triggered by extracellular signal-regulated kinase (ERK) activity. Moreover, we identified the specific UV light-inducible DNA element of the NOXA promoter and found that this sequence is responsible for transcription factor Krüppel-like factor 4 (KLF4)-mediated induction. In p53-mutated TNBC cells, inhibition of KLF4 by RNA interference reduced NOXA expression. Furthermore, treatment of TNBC cells with a KLF4-inducing small compound, APTO-253, resulted in the induction of NOXA expression and NOXA-mediated apoptosis. Therefore, our results help to clarify the molecular mechanism of DNA damage-induced apoptosis and provide support for a possible treatment method for p53-mutated cancers.
Collapse
|
18
|
Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021; 185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein p53 participates in the control of key biological functions such as cell death, metabolic homeostasis and immune function, which are closely related to various diseases such as tumors, metabolic disorders, infection and neurodegeneration. The p53 gene is also mutated in approximately 50% of human cancer cells. Mutant p53 proteins escape from the ubiquitination-dependent degradation, gain oncogenic function and promote the carcinogenesis, malignant progression, metastasis and chemoresistance. Therefore, the stability of both wild type and mutant p53 needs to be precisely regulated to maintain normal functions and targeting the p53 stability is one of the therapeutic strategies against cancer. Here, we focus on compound-induced degradation of p53 by both the ubiquitination-dependent proteasome and autophagy-lysosome degradation pathways. We also review other posttranslational modifications which control the stability of p53 and the biological functions involved in these processes. This review provides the current theoretical basis for the regulation of p53 abundance and its possible applications in different diseases.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Alzhanova D, Corcoran K, Bailey AG, Long K, Taft-Benz S, Graham RL, Broussard GS, Heise M, Neumann G, Halfmann P, Kawaoka Y, Baric RS, Damania B, Dittmer DP. Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathog 2021; 17:e1009033. [PMID: 33411764 PMCID: PMC7790267 DOI: 10.1371/journal.ppat.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs. New viruses are constantly emerging. The ORFEOME project was based on the hypothesis that every virus, regardless of its molecular makeup and biology should encode functions that intersect the p53 signaling network, since p53 guards the cell from genomic insults, of which depositing a foreign, viral nucleic acid is one. The result of the ORFEOME screen of proteins without any known function, of predicted open reading frames and of suspected non-coding RNAs is the identification of two viral proteins that interact with p53. The first one, orf10, is encoded by Kaposi Sarcoma-associated herpesvirus and the second one, NS2A, is encoded by the Zika virus.
Collapse
Affiliation(s)
- Dina Alzhanova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kathleen Corcoran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aubrey G. Bailey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin Long
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Grant S. Broussard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Behl T, Sharma A, Sharma L, Sehgal A, Zengin G, Brata R, Fratila O, Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020; 8:E571. [PMID: 33291236 PMCID: PMC7762146 DOI: 10.3390/biomedicines8120571] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WA), a manifold studied, C28-steroidal lactone withanolide found in Withania somnifera. Given its unique beneficial effects, it has gathered attention in the era of modern science. Cancer, being considered a "hopeless case and the leading cause of death worldwide, and the available conventional therapies have many lacunae in the form of side effects. The poly pharmaceutical natural compound, WA treatment, displayed attenuation of various cancer hallmarks by altering oxidative stress, promoting apoptosis, and autophagy, inhibiting cell proliferation, reducing angiogenesis, and metastasis progression. The cellular proteins associated with antitumor pathways were also discussed. WA structural modifications attack multiple signal transduction pathways and enhance the therapeutic outcomes in various diseases. Moreover, it has shown validated pharmacological effects against multiple neurodegenerative diseases by inhibiting acetylcholesterinases and butyrylcholinesterases enzyme activity, antidiabetic activity by upregulating adiponectin and preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ), cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis. The current review is an extensive survey of various WA associated disease targets, its pharmacokinetics, synergistic combination, modifications, and biological activities.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42250, Turkey;
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
21
|
USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci Rep 2020; 10:20870. [PMID: 33257797 PMCID: PMC7705756 DOI: 10.1038/s41598-020-78000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
Bromodomain (BRD)-containing proteins are important for chromatin remodeling to regulate gene expression. In this study, we found that the deubiquitinase USP24 interacted with BRD through its C-terminus increased the levels of most BRD-containing proteins through increasing their protein stability by the removal of ubiquitin from Lys391/Lys400 of the BRD. In addition, we found that USP24 and BRG1 could regulate each other through regulating the protein stability and the transcriptional activity, respectively, of the other, suggesting that the levels of USP24 and BRG1 are regulated to form a positive feedback loop in cancer progression. Loss of the interaction motif of USP24 eliminated the ability of USP24 to stabilize BRD-containing proteins and abolished the effect of USP24 on cancer progression, including its inhibition of cancer cell proliferation and promotion of cancer cell migration, suggesting that the interaction between USP24 and the BRD is important for USP24-mediated effects on cancer progression. The targeting of BRD-containing proteins has been developed as a strategy for cancer therapy. Based on our study, targeting USP24 to inhibit the levels of BRD-containing proteins may inhibit cancer progression.
Collapse
|
22
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
23
|
Cho J, Park J, Shin SC, Jang M, Kim JH, Kim EE, Song EJ. USP47 Promotes Tumorigenesis by Negative Regulation of p53 through Deubiquitinating Ribosomal Protein S2. Cancers (Basel) 2020; 12:E1137. [PMID: 32370049 PMCID: PMC7281321 DOI: 10.3390/cancers12051137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
p53 is activated in response to cellular stresses such as DNA damage, oxidative stress, and especially ribosomal stress. Although the regulations of p53 by E3 ligase and deubiquitinating enzymes (DUBs) have been described, the cellular roles of DUB associated with ribosomal stress have not been well studied. In this study, we report that Ubiquitin Specific Protease 47 (USP47) functions as an important regulator of p53. We show that ubiquitinated ribosomal protein S2 (RPS2) by Mouse double minute 2 homolog (MDM2) is deubiquitinated by USP47. USP47 inhibits the interaction between RPS2 and MDM2 thereby alleviating RPS2-mediated suppression of MDM2 under normal conditions. However, dissociation of USP47 leads to RPS2 binding to MDM2, which is required for the suppression of MDM2, consequently inducing up-regulation of the p53 level under ribosomal stress. Finally, we show that depletion of USP47 induces p53 and therefore inhibits cell proliferation, colony formation, and tumor progression in cancer cell lines and a mouse xenograft model. These findings suggest that USP47 could be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 02841, Korea;
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea;
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Jae-Hong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 02841, Korea;
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
24
|
Dom M, Vanden Berghe W, Van Ostade X. Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Med Chem 2020; 11:30-50. [PMID: 33479603 PMCID: PMC7523023 DOI: 10.1039/c9md00296k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The multifunctional antitumor properties of Withaferin A (WA), the manifold studied bioactive compound of the plant Withania somnifera, have been well established in many different in vitro and in vivo cancer models. This undoubtedly has led to a much better insight in the underlying mechanisms of WAs broad antitumor activity range, but also raises additional challenging questions on how all these antitumor properties could be explained on a molecular level. Therefore, a lot of effort was made to characterize the cellular WA target proteins, since these binding events will lead and initiate the observed downstream effects. Based on a proteomic perspective, this review provides novel insights in the molecular chain of events by which WA potentially exercises its antitumor activities. We illustrate that WA triggers multiple cellular stress pathways such as the NRF2-mediated oxidative stress response, the heat shock response and protein translation events and at the same time inhibits these cellular protection mechanisms, driving stressed cancer cells towards a fatal state of collapse. If cancer cells manage to restore homeostasis and survive, a stress-independent WA antitumor response comes into play. These include the known inhibition of cytoskeleton proteins, NFκB pathway inhibition and cell cycle inhibition, among others. This review therefore provides a comprehensive overview which integrates the numerous WA-protein binding partners to formulate a general WA antitumor mechanism.
Collapse
Affiliation(s)
- Martin Dom
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| |
Collapse
|
25
|
Ting X, Xia L, Yang J, He L, Si W, Shang Y, Sun L. USP11 acts as a histone deubiquitinase functioning in chromatin reorganization during DNA repair. Nucleic Acids Res 2019; 47:9721-9740. [PMID: 31504778 PMCID: PMC6765148 DOI: 10.1093/nar/gkz726] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
How chromatin dynamics is regulated to ensure efficient DNA repair remains to be understood. Here, we report that the ubiquitin-specific protease USP11 acts as a histone deubiquitinase to catalyze H2AK119 and H2BK120 deubiquitination. We showed that USP11 is physically associated with the chromatin remodeling NuRD complex and functionally involved in DNA repair process. We demonstrated that USP11-mediated histone deubiquitination and NuRD-associated histone deacetylation coordinate to allow timely termination of DNA repair and reorganization of the chromatin structure. As such, USP11 is involved in chromatin condensation, genomic stability, and cell survival. Together, these observations indicate that USP11 is a chromatin modifier critically involved in DNA damage response and the maintenance of genomic stability.
Collapse
Affiliation(s)
- Xia Ting
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lu Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
26
|
Chen L, Shi Y, Liu N, Wang Z, Yang R, Yan B, Liu X, Lai W, Liu Y, Xiao D, Zhou H, Cheng Y, Cao Y, Liu S, Xia Z, Tao Y. DNA methylation modifier LSH inhibits p53 ubiquitination and transactivates p53 to promote lipid metabolism. Epigenetics Chromatin 2019; 12:59. [PMID: 31594538 PMCID: PMC6781351 DOI: 10.1186/s13072-019-0302-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The stability of p53 is mainly controlled by ubiquitin-dependent degradation, which is triggered by the E3 ubiquitin ligase MDM2. The chromatin modifier lymphoid-specific helicase (LSH) is essential for DNA methylation and cancer progression as a transcriptional repressor. The potential interplay between chromatin modifiers and transcription factors remains largely unknown. RESULTS Here, we present data suggesting that LSH regulates p53 in cis through two pathways: prevention proteasomal degradation through its deubiquitination, which is achieved by reducing the lysine 11-linked, lysine 48-linked polyubiquitin chains (K11 and K48) on p53; and revival of the transcriptional activity of p53 by forming a complex with PKM2 (pyruvate kinase 2). Furthermore, we confirmed that the LSH-PKM2 interaction occurred at the intersubunit interface region of the PKM2 C-terminal region and the coiled-coil domains (CC) and ATP-binding domains of LSH, and this interaction regulated p53-mediated transactivation in cis in lipid metabolism, especially lipid catabolism. CONCLUSION These findings suggest that LSH is a novel regulator of p53 through the proteasomal pathway, thereby providing an alternative mechanism of p53 involvement in lipid metabolism in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Zuli Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Rui Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Bin Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xiaoli Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Weiwei Lai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Hu Zhou
- Shanghai Institute of Material Medica, Chinese Academy of Sciences (CAS), 555 Zu Chongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yan Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Thayer JA, Awad O, Hegdekar N, Sarkar C, Tesfay H, Burt C, Zeng X, Feldman RA, Lipinski MM. The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy 2019; 16:140-153. [PMID: 30957634 PMCID: PMC6984603 DOI: 10.1080/15548627.2019.1598754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies indicate a causative relationship between defects in autophagy and dopaminergic neuron degeneration in Parkinson disease (PD). However, it is not fully understood how autophagy is regulated in the context of PD. Here we identify USP24 (ubiquitin specific peptidase 24), a gene located in the PARK10 (Parkinson disease 10 [susceptibility]) locus associated with late onset PD, as a novel negative regulator of autophagy. Our data indicate that USP24 regulates autophagy by affecting ubiquitination and stability of the ULK1 protein. Knockdown of USP24 in cell lines and in human induced-pluripotent stem cells (iPSC) differentiated into dopaminergic neurons resulted in elevated ULK1 protein levels and increased autophagy flux in a manner independent of MTORC1 but dependent on the class III phosphatidylinositol 3-kinase (PtdIns3K) activity. Surprisingly, USP24 knockdown also improved neurite extension and/or maintenance in aged iPSC-derived dopaminergic neurons. Furthermore, we observed elevated levels of USP24 in the substantia nigra of a subpopulation of idiopathic PD patients, suggesting that USP24 may negatively regulate autophagy in PD. Abbreviations: Bafilomycin/BafA: bafilomycin A1; DUB: deubiquitinating enzyme; iPSC: induced pluripotent stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; nt: non-targeting; PD: Parkinson disease; p-ATG13: phospho-ATG13; PtdIns3P: phosphatidylinositol 3-phosphate; RPS6: ribosomal protein S6; SNPs: single nucleotide polymorphisms; TH: tyrosine hydroxylase; USP24: ubiquitin specific peptidase 24
Collapse
Affiliation(s)
- Julia A Thayer
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology
| | - Nivedita Hegdekar
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henok Tesfay
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameran Burt
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Marta M Lipinski
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, Tong Y, Zhou L, Yang L, Yang J, Lei H, Xu H, Liu C, Wu Y. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int 2019; 19:56. [PMID: 30911287 PMCID: PMC6415346 DOI: 10.1186/s12935-019-0773-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is a lymphoid malignancy caused by the oncogenic transformation of immature T-cell progenitors with poor outcomes. WP1130 has shown potent activity against a variety of cancer but whether WP1130 has anti-T-ALL activity is not clear. USP24, one target of WP1130, is one of the largest deubiquitinases and its detailed mechanism is poorly understood. The aim of this study was to explore whether WP1130 could suppress T-ALL and the role of USP24 in T-ALL. Methods Molecular docking and cellular thermal shift assay were performed to determine whether and how WP1130 directly interact with USP24. Mitochondrial transmembrane potential assay was measured via Rhodamine 123 staining. USP24 was reactivated using the deactivated CRISPR-associated protein 9 (dCas9)-synergistic activation mediator (SAM) system. The in vivo results were examined by tumor xenografts in NOD-SCID mice. All statistical analyses were performed with the SPSS software package. Results WP1130 treatment decreased the viability and induces apoptosis of T-ALL cells both in vitro and in vivo. Furthermore, we demonstrated that knockdown of USP24 but not USP9X could significantly induce growth inhibition and apoptosis of T-ALL cells. Oncomine database showed that USP24 expression was upregulated in T-ALL samples and Kaplan–Meier results indicated that the USP24 was negatively but USP9X was positively associated with survival in T-ALL patients. Additionally, we proposed that WP1130 directly interacts with the activity site pocket of USP24 in T-ALL cells, which leads to the decrease of its substrates Mcl-1. Mechanistically, WP1130 induces apoptosis by accelerating the collapse of mitochondrial transmembrane potential via USP24-Mcl-1 axis. Conclusions Altogether, using WP1130 as a chemical probe, we demonstrate that USP24 but not USP9X is a novel target in T-ALL cells. Moreover, we uncovered that WP1130 induces apoptosis by accelerating the collapse of mitochondrial transmembrane potential via USP24-Mcl-1 axis. These results provide that USP24-Mcl-1 axis may represent a novel strategy in the treatment of T-ALL and WP1130 is a promising lead compound for developing anti-T-ALL drugs. Electronic supplementary material The online version of this article (10.1186/s12935-019-0773-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Luo
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Bo Jing
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yu Xia
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yugen Zhang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Meng Hu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Haiyan Cai
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yin Tong
- 2Department of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Zhou
- 3State Key Laboratory of Medical Genomics, Department of Hematology, Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Li Yang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Junmei Yang
- 4Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018 China
| | - Hu Lei
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hanzhang Xu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Chuanxu Liu
- 5Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yingli Wu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
30
|
Birnbaum MD, Nemzow L, Kumar A, Gong F, Zhang F. A Rapid and Precise Mutation-Activated Fluorescence Reporter for Analyzing Acute Mutagenesis Frequency. Cell Chem Biol 2018; 25:1038-1049.e5. [PMID: 29909992 PMCID: PMC6550304 DOI: 10.1016/j.chembiol.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/26/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Mutagenesis reporters are critical for quantifying genome stability. However, current methods rely on cell survival/death to report mutation, which takes weeks and prevents evaluation of acute or time-dependent changes. Existing methods also have other limitations, such as cell type restrictions. Using our discovery that mCherryFP fluorescence depends on residue Trp98, we replaced this codon with a stop codon to generate a mutation biosensor (termed CherryOFF), with a green fluorescence protein (GFP) as an internal control. We found that the red fluorescence of this biosensor is activated by a specific A/T-G/C nucleotide transition. Compared with the established hypoxanthine phosphoribosyl transferase assay, our reporter has similar or better ability to detect changes of mutation frequency induced by physical/chemical mutagens or manipulation of mutation-related genes. Furthermore, CherryOFF-GFP can report mutagenesis independently of cell-death events, can be adapted to many cell types, and can generate readouts within 1 day for the measurement of acute or time-dependent events.
Collapse
Affiliation(s)
- Michael D Birnbaum
- Department of Molecular & Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Leah Nemzow
- Department of Biochemistry & Molecular Biology, University of Miami, Miami, FL 33136, USA
| | - Akhilesh Kumar
- Department of Molecular & Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Feng Gong
- Department of Biochemistry & Molecular Biology, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA.
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Human Cytomegalovirus Protein pUL38 Prevents Premature Cell Death by Binding to Ubiquitin-Specific Protease 24 and Regulating Iron Metabolism. J Virol 2018; 92:JVI.00191-18. [PMID: 29695420 DOI: 10.1128/jvi.00191-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/14/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) protein pUL38 has been shown to prevent premature cell death by antagonizing cellular stress responses; however, the underlying mechanism remains unknown. In this study, we identified the host protein ubiquitin-specific protease 24 (USP24) as an interaction partner of pUL38. Mutagenesis analysis of pUL38 revealed that amino acids TFV at positions 227 to 230 were critical for its interaction with USP24. Mutant pUL38 TFV/AAA protein did not bind to USP24 and failed to prevent cell death induced by pUL38-deficient HCMV infection. Knockdown of USP24 suppressed the cell death during pUL38-deficient HCMV infection, suggesting that pUL38 achieved its function by antagonizing the function of USP24. We investigated the cellular pathways regulated by USP24 that might be involved in the cell death phenotype by testing several small-molecule compounds known to have a protective effect during stress-induced cell death. The iron chelators ciclopirox olamine and Tiron specifically protected cells from pUL38-deficient HCMV infection-induced cell death, thus identifying deregulated iron homeostasis as a potential mechanism. Protein levels of nuclear receptor coactivator 4 (NCOA4) and lysosomal ferritin degradation, a process called ferritinophagy, were also regulated by pUL38 and USP24 during HCMV infection. Knockdown of USP24 decreased NCOA4 protein stability and ferritin heavy chain degradation in lysosomes. Blockage of ferritinophagy by genetic inhibition of NCOA4 or Atg5/Atg7 prevented pUL38-deficient HCMV infection-induced cell death. Overall, these results support the hypothesis that pUL38 binds to USP24 to reduce ferritinophagy, which may then protect cells from lysosome dysfunction-induced cell death.IMPORTANCE Premature cell death is considered a first line of defense against various pathogens. Human cytomegalovirus (HCMV) is a slow-replicating virus that encodes several cell death inhibitors, such as pUL36 and pUL37x1, which allow it to overcome both extrinsic and intrinsic mitochondrion-mediated apoptosis. We previously identified HCMV protein pUL38 as another virus-encoded cell death inhibitor. In this study, we demonstrated that pUL38 achieved its activity by interacting with and antagonizing the function of the host protein ubiquitin-specific protease 24 (USP24). pUL38 blocked USP24-mediated ferritin degradation in lysosomes, which could otherwise be detrimental to the lysosome and initiate cell death. These novel findings suggest that iron metabolism is finely tuned during HCMV infection to avoid cellular toxicity. The results also provide a solid basis for further investigations of the role of USP24 in regulating iron metabolism during infection and other diseases.
Collapse
|
32
|
Van Quickelberghe E, Martens A, Goeminne LJE, Clement L, van Loo G, Gevaert K. Identification of Immune-Responsive Gene 1 (IRG1) as a Target of A20. J Proteome Res 2018; 17:2182-2191. [DOI: 10.1021/acs.jproteome.8b00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Arne Martens
- VIB-UGent Center
for Inflammation Research, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | | | | | - Geert van Loo
- VIB-UGent Center
for Inflammation Research, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center
for Medical Biotechnology, B-9000 Ghent, Belgium
| |
Collapse
|
33
|
Kim SY, Kwon SK, Lee SY, Baek KH. Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53-/- HCT116 cells. Int J Oncol 2018; 52:1705-1714. [PMID: 29512757 DOI: 10.3892/ijo.2018.4302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Most proteins undergo ubiquitination, a process by which ubiquitin proteins bind to their substrate proteins; by contrast, deubiquitination is a process that reverses ubiquitination. Deubiquitinating enzymes (DUBs) function to remove ubiquitin proteins from the protein targets and serve an essential role in regulating DNA repair, protein degradation, apoptosis and immune responses. Abnormal regulation of DUBs may affect a number of cellular processes and may lead to a variety of human diseases, including cancer. Therefore, it is important to identify abnormally expressed DUBs to identify DUB-related diseases and biological mechanisms. The present study aimed to develop a multiplex polymerase chain reaction screening platform comprising primers for various DUB genes. This assay was used to identify p53-related DUBs in HCT116 p53+/+ and p53-/- cells. The results demonstrated that ubiquitin-specific peptidase 5 (USP5) and ovarian tumor deubiquitinase 6A (OTUD6A) were differentially expressed in p53+/+ and p53-/- HCT116 cells. Based on the data obtained through DUB screening, the protein expression levels of USP5 and OTUD6A were examined by western blotting, which confirmed that both of these DUBs were also expressed differentially in p53+/+ and p53-/- HCT116 cells. In conclusion, results from the DUB screening performed by the present study revealed that the expression of USP5 and OTUD6A may be affected by p53, and this method may be useful for the rapid and cost-effective identification of possible biomarkers.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Seul-Ki Kwon
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - So-Young Lee
- Department of Internal Medicine, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
34
|
Piao S, Pei HZ, Huang B, Baek SH. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53. Cell Signal 2017; 33:22-29. [DOI: 10.1016/j.cellsig.2017.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
|
35
|
Cetkovská K, Šustová H, Uldrijan S. Ubiquitin-specific peptidase 48 regulates Mdm2 protein levels independent of its deubiquitinase activity. Sci Rep 2017; 7:43180. [PMID: 28233861 PMCID: PMC5324091 DOI: 10.1038/srep43180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
The overexpression of Mdm2 has been linked to the loss of p53 tumour suppressor activity in several human cancers. Here, we present results suggesting that ubiquitin-specific peptidase 48 (USP48), a deubiquitinase that has been linked in previous reports to the NF-κB signaling pathway, is a novel Mdm2 binding partner that promotes Mdm2 stability and enhances Mdm2-mediated p53 ubiquitination and degradation. In contrast to other deubiquitinating enzymes (DUBs) that have been previously implicated in the regulation of Mdm2 protein stability, USP48 did not induce Mdm2 stabilization by significantly reducing Mdm2 ubiquitination levels. Moreover, two previously characterized USP48 mutants lacking deubiquitinase activity were also capable of efficiently stabilizing Mdm2, indicating that USP48 utilizes a non-canonical, deubiquitination-independent mechanism to promote Mdm2 oncoprotein stability. This study represents, to the best of our knowledge, the first report suggesting DUB-mediated target protein stabilization that is independent of its deubiquitinase activity. In addition, our results suggest that USP48 might represent a new mechanism of crosstalk between the NF-κB and p53 stress response pathways.
Collapse
Affiliation(s)
- Kateřina Cetkovská
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Hana Šustová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
36
|
Vriend J, Marzban H. The ubiquitin-proteasome system and chromosome 17 in cerebellar granule cells and medulloblastoma subgroups. Cell Mol Life Sci 2017; 74:449-467. [PMID: 27592301 PMCID: PMC11107675 DOI: 10.1007/s00018-016-2354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 2016; 6:62. [PMID: 28031783 PMCID: PMC5168870 DOI: 10.1186/s13578-016-0127-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
The addition of mono-ubiquitin or poly-ubiquitin chain to signaling proteins in response to DNA damage signal is thought to be a critical event that facilitates the recognition of DNA damage lesion site, the activation of checkpoint function, termination and checkpoint response and the recruitment of DNA repair proteins. Despite the ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in orchestrating DNA damage response as well as DNA repair processes. Deregulated ubiquitination and deubiquitination could lead to genome instability that in turn causes tumorigenesis. Recent TCGA study has further revealed the connection between mutations in alteration of DUBs and various types of tumors. In addition, emerging drug design based on DUBs provides a new avenue for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and specificity of DUBs, and highlight the recent discoveries of DUBs in the modulation of ubiquitin-mediated DNA damage response and DNA damage repair. We will furthermore discuss the DUBs involved in the tumorigenesis as well as interception of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Haojing Zou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Jin Tao
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
38
|
Chitale S, Richly H. Timing of DNA lesion recognition: Ubiquitin signaling in the NER pathway. Cell Cycle 2016; 16:163-171. [PMID: 27929739 DOI: 10.1080/15384101.2016.1261227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Damaged DNA is repaired by specialized repair factors that are recruited in a well-orchestrated manner to the damage site. The DNA damage response at UV inflicted DNA lesions is accompanied by posttranslational modifications of DNA repair factors and the chromatin environment sourrounding the lesion. In particular, mono- and poly-ubiquitylation events are an integral part of the DNA damage signaling. Whereas ubiquitin signaling at DNA doublestrand breaks has been subject to intensive studies comparatively little is known about the intricacies of ubiquitylation events occurring during nucleotide excision repair (NER), the major pathway to remove bulky helix lesions. Both, the global genomic (GG-NER) and the transcription-coupled (TC-NER) branches of NER are subject to ubiquitylation and deubiquitylation processes.Here we summarize our current knowledge of the ubiquitylation network that drives DNA repair in the NER pathway and we discuss the crosstalk of ubiquitin signaling with other prominent post-translational modfications that might be essential to time the DNA damage recognition step.
Collapse
Affiliation(s)
- Shalaka Chitale
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany.,b Faculty of Biology, Johannes Gutenberg University , Mainz , Germany
| | - Holger Richly
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
39
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|
40
|
Publisher’s Note. DNA Repair (Amst) 2016. [DOI: 10.1016/j.dnarep.2016.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Abstract
Nucleotide excision repair (NER) protects genome stability by eliminating DNA helix distorting lesions, such as those induced by UV radiation. The addition and removal of ubiquitin, namely, ubiquitination and deubiquitination, have recently been demonstrated as general mechanisms to regulate protein functions. Accumulating evidence shows that several NER factors are subjected to extensive regulation by ubiquitination and deubiquitination. Thus, the balance between E3 ligases and deubiquitinating enzyme activities can dynamically alter the ubiquitin landscape at DNA damage sites, thereby regulating NER efficiency. Current knowledge about XPC ubiquitination by different ubiquitin E3 ligases highlights the importance of ubiquitin linkage types in regulating XPC binding and release from damaged DNA. Here, we discuss the emerging roles of deubiquitinating enzymes and their ubiquitin linkage specificities in NER.
Collapse
|
42
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
43
|
Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene 2015; 35:3669-80. [PMID: 26568301 DOI: 10.1038/onc.2015.432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Ubiquitin is a critical modifier regulating the degradation and function of its target proteins during posttranslational modification. Here we found that ubiquitin-specific peptidase 24 (USP24) is highly expressed in cell lines with enhanced malignancy and in late-stage lung cancer clinical samples. Studying single-nucleotide polymorphisms (SNPs) of USP24 using genomic DNA of lung cancer patients revealed an increase in SNP 7656C/T. When using RNA specimens instead of the genomic DNA of lung cancer patients, we found significant increases in the ratios of variants 930C/T and 7656T/C, suggesting that variants at these two sites are not only caused by the SNP of DNA but also by the RNA editing. USP24-930T and USP24-7656C increase USP24 expression levels by increasing RNA stability. Knocking down USP24 increased Suv39h1 level through a decrease in mouse double-minute 2 homolog levels, thus enhancing lysine-9 methylation of histone H3, and resulting in the prevention of lung cancer malignancy. In conclusion, as USP24 variant analysis revealed a higher ratio of variants in blood specimens of lung cancer patients than that in normal individuals, USP24-930T and USP24-7656C might be useful as diagnostic markers for cancer detection.
Collapse
|
44
|
Zhang L, Gong F. Involvement of USP24 in the DNA damage response. Mol Cell Oncol 2015; 3:e1011888. [PMID: 27308530 DOI: 10.1080/23723556.2015.1011888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 10/23/2022]
Abstract
Deubiquitination has emerged as an important mechanism of regulating DNA repair pathways. We recently reported that USP24 is a novel p53 deubiquitinase that stabilizes p53 upon DNA damage. USP24 is upregulated by DNA damaging agents and plays an important role in maintaining genome stability.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology; University of Miami Miller School of Medicine ; Miami, FL USA
| | - Feng Gong
- Department of Biochemistry and Molecular Biology; University of Miami Miller School of Medicine ; Miami, FL USA
| |
Collapse
|