1
|
Zhu P, Hou C, Liu M, Chen T, Li T, Wang L. Investigating phase separation properties of chromatin-associated proteins using gradient elution of 1,6-hexanediol. BMC Genomics 2023; 24:493. [PMID: 37641002 PMCID: PMC10464338 DOI: 10.1186/s12864-023-09600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Chromatin-associated phase separation proteins establish various biomolecular condensates via liquid-liquid phase separation (LLPS), which regulates vital biological processes spatially and temporally. However, the widely used methods to characterize phase separation proteins are still based on low-throughput experiments, which consume time and could not be used to explore protein LLPS properties in bulk. RESULTS By combining gradient 1,6-hexanediol (1,6-HD) elution and quantitative proteomics, we developed chromatin enriching hexanediol separation coupled with liquid chromatography-mass spectrometry (CHS-MS) to explore the LLPS properties of different chromatin-associated proteins (CAPs). First, we found that CAPs were enriched more effectively in the 1,6-HD treatment group than in the isotonic solution treatment group. Further analysis showed that the 1,6-HD treatment group could effectively enrich CAPs prone to LLPS. Finally, we compared the representative proteins eluted by different gradients of 1,6-HD and found that the representative proteins of the 2% 1,6-HD treatment group had the highest percentage of IDRs and LCDs, whereas the 10% 1,6-HD treatment group had the opposite trend. CONCLUSION This study provides a convenient high-throughput experimental method called CHS-MS. This method can efficiently enrich proteins prone to LLPS and can be extended to explore LLPS properties of CAPs in different biological systems.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Manlin Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Taoyu Chen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China.
| | - Likun Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
2
|
Liu L, Li H, Wang M, Zhang X, Ren J, Yuan Y, Sha J, Guo X. Multi-Omics Approaches for Revealing the Epigenetic Regulation of Histone H3.1 during Spermatogonial Stem Cell Differentiation In Vitro. Int J Mol Sci 2023; 24:ijms24043314. [PMID: 36834727 PMCID: PMC9958608 DOI: 10.3390/ijms24043314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic regulation, particularly post-translational modifications (PTMs) of histones, participates in spermatogonial stem cell (SSCs) differentiation. However, there is a lack of systemic studies of histone PTM regulation during the differentiation of SSCs due to its low number in vivo. Herein, we quantified dynamic changes of 46 different PTMs on histone H3.1 by targeted quantitative proteomics using mass spectrometry during SSCs differentiation in vitro, in combination with our RNA-seq data. We identified seven histone H3.1 modifications to be differentially regulated. In addition, we selected H3K9me2 and H3S10ph for subsequent biotinylated peptide pull-down experiments and identified 38 H3K9me2-binding proteins and 42 H3S10ph-binding proteins, which contain several transcription factors, such as GTF2E2 and SUPT5H, which appear to be crucial for epigenetic regulation of SSC differentiation.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Haojie Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Mengjie Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 210029, China
- Correspondence: (J.S.); (X.G.)
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Correspondence: (J.S.); (X.G.)
| |
Collapse
|
3
|
Viegas JO, Azad GK, Lv Y, Fishman L, Paltiel T, Pattabiraman S, Park JE, Kaganovich D, Sze SK, Rabani M, Esteban MA, Meshorer E. RNA degradation eliminates developmental transcripts during murine embryonic stem cell differentiation via CAPRIN1-XRN2. Dev Cell 2022; 57:2731-2744.e5. [PMID: 36495875 PMCID: PMC9796812 DOI: 10.1016/j.devcel.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Embryonic stem cells (ESCs) are self-renewing and pluripotent. In recent years, factors that control pluripotency, mostly nuclear, have been identified. To identify non-nuclear regulators of ESCs, we screened an endogenously labeled fluorescent fusion-protein library in mouse ESCs. One of the more compelling hits was the cell-cycle-associated protein 1 (CAPRIN1). CAPRIN1 knockout had little effect in ESCs, but it significantly altered differentiation and gene expression programs. Using RIP-seq and SLAM-seq, we found that CAPRIN1 associates with, and promotes the degradation of, thousands of RNA transcripts. CAPRIN1 interactome identified XRN2 as the likely ribonuclease. Upon early ESC differentiation, XRN2 is located in the nucleus and colocalizes with CAPRIN1 in small RNA granules in a CAPRIN1-dependent manner. We propose that CAPRIN1 regulates an RNA degradation pathway operating during early ESC differentiation, thus eliminating undesired spuriously transcribed transcripts in ESCs.
Collapse
Affiliation(s)
- Juliane O. Viegas
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Gajendra Kumar Azad
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel,Department of Zoology, Patna University, Patna, Bihar 800005, India
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lior Fishman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tal Paltiel
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | | | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Daniel Kaganovich
- School of Biological Sciences, University of Southampton, Southampton SO171BJ, UK,Wren Therapeutics, Cambridge CB21EW, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore,Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michal Rabani
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Miguel A. Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Eran Meshorer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel,Corresponding author
| |
Collapse
|
4
|
Wischhof L, Lee H, Tutas J, Overkott C, Tedt E, Stork M, Peitz M, Brüstle O, Ulas T, Händler K, Schultze JL, Ehninger D, Nicotera P, Salomoni P, Bano D. BCL7A-containing SWI/SNF/BAF complexes modulate mitochondrial bioenergetics during neural progenitor differentiation. EMBO J 2022; 41:e110595. [PMID: 36305367 PMCID: PMC9713712 DOI: 10.15252/embj.2022110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Hang‐Mao Lee
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Janine Tutas
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Eileen Tedt
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn Medical Faculty and University Hospital BonnBonnGermany
- Cell Programming Core FacilityUniversity of Bonn Medical FacultyBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn Medical Faculty and University Hospital BonnBonnGermany
| | - Thomas Ulas
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
- Department for Genomics and Immunoregulation, LIMES InstituteUniversity of BonnBonnGermany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
5
|
Sun X, Cheng L, Sun Y. Autism-associated protein POGZ controls ESCs and ESC neural induction by association with esBAF. Mol Autism 2022; 13:24. [PMID: 35650610 PMCID: PMC9161502 DOI: 10.1186/s13229-022-00502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/16/2022] [Indexed: 01/15/2023] Open
Abstract
Background The POGZ gene has been found frequently mutated in neurodevelopmental disorders (NDDs), particularly autism spectrum disorder (ASD) and intellectual disability (ID). However, little is known about its roles in embryonic stem cells (ESCs), neural development and diseases. Methods We generated Pogz−/− ESCs and directed ESC differentiation toward a neural fate. We performed biochemistry, ChIP-seq, ATAC-seq, and bioinformatics analyses to understand the role of POGZ. Results We show that POGZ is required for the maintenance of ESC identity and the up-regulation of neural genes during ESC differentiation toward a neural fate. Genome-wide binding analysis shows that POGZ is primarily localized to gene promoter and enhancer regions. POGZ functions as both a transcriptional activator and repressor, and its loss leads to deregulation of differentiation genes, including neural genes. POGZ physically associates with the SWI-SNF (esBAF) chromatin remodeler complex, and together they modulate enhancer activities via epigenetic modifications such as chromatin remodeling and histone modification. During ESC neural induction, POGZ-mediated recruitment of esBAF/BRG1 and H3K27ac are important for proper expression of neural progenitor genes. Limitations The genotype and allele relevant to human neurodevelopmental disorders is heterozygous loss of function. This work is designed to study the effects of loss of POGZ function on ESCs and during ESC neural induction. Also, this work lacks of in vivo validation using animal models. Conclusions The data suggest that POGZ is both a transcription factor and a genome regulator, and its loss leads to defects in neural induction and neurogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00502-9.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Linxi Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China.,University of Chinese Academy of Sciences, Beijing, 100010, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China. .,University of Chinese Academy of Sciences, Beijing, 100010, China. .,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Sigismondo G, Papageorgiou DN, Krijgsveld J. Cracking chromatin with proteomics: From chromatome to histone modifications. Proteomics 2022; 22:e2100206. [PMID: 35633285 DOI: 10.1002/pmic.202100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Chromatin is the assembly of genomic DNA and proteins packaged in the nucleus of eukaryotic cells, which together are crucial in regulating a plethora of cellular processes. Histones may be the best known class of protein constituents in chromatin, which are decorated by a range of post-translational modifications to recruit accessory proteins and protein complexes to execute specific functions, ranging from DNA compaction, repair, transcription and duplication, all in a dynamic fashion and depending on the cellular state. The key role of chromatin in cellular fitness is emphasized by the deregulation of chromatin determinants predisposing to different diseases, including cancer. For this reason, deep investigation of chromatin composition is fundamental to better understand cellular physiology. Proteomic approaches have played a crucial role to understand critical aspects of this complex interplay, benefiting from the ability to identify and quantify proteins and their modifications in an unbiased manner. This review gives an overview of the proteomic approaches that have been developed by combining mass spectrometry-based with tailored biochemical and genetic methods to examine overall protein make-up of chromatin, to characterize chromatin domains, to determine protein interactions, and to decipher the broad spectrum of histone modifications that represent the quintessence of chromatin function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gianluca Sigismondo
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Genome-wide screening for genes involved in the epigenetic basis of fragile X syndrome. Stem Cell Reports 2022; 17:1048-1058. [PMID: 35427485 PMCID: PMC9133649 DOI: 10.1016/j.stemcr.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. The epigenetic factors responsible for FMR1 inactivation are largely unknown. Here, we initially demonstrated the feasibility of FMR1 reactivation by targeting a single epigenetic factor, DNMT1. Next, we established a model system for FMR1 silencing using a construct containing the FXS-related mutation upstream to a reporter gene. This construct was methylated in vitro and introduced into a genome-wide loss-of-function (LOF) library established in haploid human pluripotent stem cells (PSCs), allowing the identification of genes whose functional loss reversed the methylation-induced silencing of the FMR1 reporter. Selected candidate genes were further analyzed in haploid- and FXS-patient-derived PSCs, highlighting the epigenetic and metabolic pathways involved in FMR1 regulation. Our work sheds light on the mechanisms responsible for CGG-expansion-mediated FMR1 inactivation and offers novel targets for therapeutic FMR1 reactivation. Perturbation of a single gene, DNMT1, reactivates FMR1 in fragile X human PSCs. FX mutation containing reporter recapitulates FMR1 silencing in haploid ESCs. Genome-wide CRISPR screening reveals epigenetic modulators of FMR1 inactivation. Novel genes regulating mutated-FMR1 expression were validated in FX-iPSCs.
Collapse
|
8
|
Dreier MR, de la Serna IL. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. EPIGENOMES 2022; 6:epigenomes6010010. [PMID: 35323214 PMCID: PMC8947417 DOI: 10.3390/epigenomes6010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive malignancy that arises from the transformation of melanocytes on the skin, mucosal membranes, and uvea of the eye. SWI/SNF chromatin remodeling enzymes are multi-subunit complexes that play important roles in the development of the melanocyte lineage and in the response to ultraviolet radiation, a key environmental risk factor for developing cutaneous melanoma. Exome sequencing has revealed frequent loss of function mutations in genes encoding SWI/SNF subunits in melanoma. However, some SWI/SNF subunits have also been demonstrated to have pro-tumorigenic roles in melanoma and to affect sensitivity to therapeutics. This review summarizes studies that have implicated SWI/SNF components in melanomagenesis and have evaluated how SWI/SNF subunits modulate the response to current therapeutics.
Collapse
|
9
|
SMARCD1 negatively regulates myeloid differentiation of leukemic cells via epigenetic mechanisms. Blood Adv 2022; 6:3106-3113. [PMID: 35078226 PMCID: PMC9131909 DOI: 10.1182/bloodadvances.2021006235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
|
10
|
Chakraborty P, Magnuson T. INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development 2022; 149:273926. [PMID: 35006254 PMCID: PMC8881737 DOI: 10.1242/dev.200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Author for correspondence ()
| |
Collapse
|
11
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
12
|
Harikumar A, Lim PSL, Nissim-Rafinia M, Park JE, Sze SK, Meshorer E. Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin. Stem Cell Reports 2021; 15:1260-1274. [PMID: 33296674 PMCID: PMC7724474 DOI: 10.1016/j.stemcr.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and β-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active β-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and β-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the β-catenin-TCF regulatory axis.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Patrick S L Lim
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
13
|
Zhu Y, Wang H, Fei M, Tang T, Niu W, Zhang L. Smarcd1 Inhibits the Malignant Phenotypes of Human Glioblastoma Cells via Crosstalk with Notch1. Mol Neurobiol 2021; 58:1438-1452. [PMID: 33190170 PMCID: PMC7932991 DOI: 10.1007/s12035-020-02190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Smarcd1 is a component of an evolutionary conserved chromatin remodeling complex-SWI/SNF, which is involved in transcription factor recruitment, DNA replication, recombination, and repair. Suppression of the SWI/SNF complex required for cellular differentiation and gene regulation may be inducible for cell proliferation and tumorigenicity. However, the inhibitory role of Smarcd1 in human glioblastoma cells has not been well illustrated. Both U87 and U251 human glioblastoma cell lines were employed in the present study. The lentivirus-mediated gene knockdown and overexpression approach was conducted to determine the function of Smarcd1. The protein levels were tested by western blot, and the relative mRNA contents were detected by quantitative real-time PCR. Cell viability was tested by CCK-8 and colony-forming assay. Transwell assays were utilized to evaluate the motility and invasive ability. Flow cytometry was employed to analyze cell cycle and apoptosis. SPSS software was used for statistical analysis. Low expression of Smarcd1 was observed in glioblastoma cell lines and in patients with high-grade glioma. Importantly, the depletion of Smarcd1 promoted cell proliferation, invasion, and chemoresistance, whereas enhanced expression of Smarcd1 inhibited tumor-malignant phenotypes. Mechanistic research demonstrated that overexpression of Smarcd1 decreased the expression of Notch1, while knockdown of Notch1 increased the expression of Smarcd1 through Hes1 suppression. Hence, the crosstalk between Smarcd1 and Notch1, which formed a feedback loop, was crucial in regulation of glioblastoma malignant phenotypes. Furthermore, targeting Smarcd1 could be a potential strategy for human glioblastoma treatment.
Collapse
Affiliation(s)
- Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China.
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Ting Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Federation AJ, Nandakumar V, Searle BC, Stergachis A, Wang H, Pino LK, Merrihew G, Ting YS, Howard N, Kutyavin T, MacCoss MJ, Stamatoyannopoulos JA. Highly Parallel Quantification and Compartment Localization of Transcription Factors and Nuclear Proteins. Cell Rep 2021; 30:2463-2471.e5. [PMID: 32101728 DOI: 10.1016/j.celrep.2020.01.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/15/2019] [Accepted: 01/28/2020] [Indexed: 01/12/2023] Open
Abstract
Transcription factors and other chromatin-associated proteins are difficult to quantify comprehensively. Here, we combine facile nuclear sub-fractionation with data-independent acquisition mass spectrometry to achieve rapid, sensitive, and highly parallel quantification of the nuclear proteome in human cells. We apply this approach to quantify the response to acute degradation of BET bromodomains, revealing unexpected chromatin regulatory dynamics. The method is simple and enables system-level study of previously inaccessible chromatin and genome regulators.
Collapse
Affiliation(s)
| | - Vivek Nandakumar
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Brian C Searle
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Andrew Stergachis
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Hao Wang
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Lindsay K Pino
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Gennifer Merrihew
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Ying S Ting
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Nicholas Howard
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Tanya Kutyavin
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA.
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA; University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Dual DNA and protein tagging of open chromatin unveils dynamics of epigenomic landscapes in leukemia. Nat Methods 2021; 18:293-302. [PMID: 33649590 PMCID: PMC8272231 DOI: 10.1038/s41592-021-01077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
The architecture of chromatin regulates eukaryotic cell states by controlling transcription factor access to sites of gene regulation. Here we describe a dual transposase-peroxidase approach, integrative DNA and protein tagging (iDAPT), which detects both DNA (iDAPT-seq) and protein (iDAPT-MS) associated with accessible regions of chromatin. In addition to direct identification of bound transcription factors, iDAPT enables the inference of their gene regulatory networks, protein interactors and regulation of chromatin accessibility. We applied iDAPT to profile the epigenomic consequences of granulocytic differentiation of acute promyelocytic leukemia, yielding previously undescribed mechanistic insights. Our findings demonstrate the power of iDAPT as a platform for studying the dynamic epigenomic landscapes and their transcription factor components associated with biological phenomena and disease.
Collapse
|
16
|
van Mierlo G, Vermeulen M. Chromatin Proteomics to Study Epigenetics - Challenges and Opportunities. Mol Cell Proteomics 2021; 20:100056. [PMID: 33556626 PMCID: PMC7973309 DOI: 10.1074/mcp.r120.002208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease. An overview of proteomics methods to study chromatin and gene regulation. Strength and limitations of the different approaches are highlighted. An outlook on the outstanding challenges for chromatin proteomics. Future directions for chromatin proteomics are discussed.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
17
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
18
|
Lezmi E, Weissbein U, Golan-Lev T, Nissim-Rafinia M, Meshorer E, Benvenisty N. The Chromatin Regulator ZMYM2 Restricts Human Pluripotent Stem Cell Growth and Is Essential for Teratoma Formation. Stem Cell Reports 2020; 15:1275-1286. [PMID: 32559458 PMCID: PMC7724477 DOI: 10.1016/j.stemcr.2020.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/13/2023] Open
Abstract
Chromatin regulators play fundamental roles in controlling pluripotency and differentiation. We examined the effect of mutations in 703 genes from nearly 70 chromatin-modifying complexes on human embryonic stem cell (ESC) growth. While the vast majority of chromatin-associated complexes are essential for ESC growth, the only complexes that conferred growth advantage upon mutation of their members, were the repressive complexes LSD-CoREST and BHC. Both complexes include the most potent growth-restricting chromatin-related protein, ZMYM2. Interestingly, while ZMYM2 expression is rather low in human blastocysts, its expression peaks in primed ESCs and is again downregulated upon differentiation. ZMYM2-null ESCs overexpress pluripotency genes and show genome-wide promotor-localized histone H3 hyper-acetylation. These mutant cells were also refractory to differentiate in vitro and failed to produce teratomas upon injection into immunodeficient mice. Our results suggest a central role for ZMYM2 in the transcriptional regulation of the undifferentiated state and in the exit-from-pluripotency of human ESCs.
Collapse
Affiliation(s)
- Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel
| | - Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel; Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel; Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
19
|
Abstract
Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.
Collapse
|
20
|
Espejo I, Di Croce L, Aranda S. The changing chromatome as a driver of disease: A panoramic view from different methodologies. Bioessays 2020; 42:e2000203. [PMID: 33169398 DOI: 10.1002/bies.202000203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Indexed: 12/16/2022]
Abstract
Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the "chromatome") are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could, thus, reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
Collapse
Affiliation(s)
- Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,UniversitatPompeuFabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
21
|
Yao Z, Chen Y, Cao W, Shyh‐Chang N. Chromatin-modifying drugs and metabolites in cell fate control. Cell Prolif 2020; 53:e12898. [PMID: 32979011 PMCID: PMC7653270 DOI: 10.1111/cpr.12898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, it is essential to produce a variety of specialized cells to perform a dazzling panoply of functions. Chromatin plays a vital role in determining cellular identities, and it dynamically regulates gene expression in response to changing nutrient metabolism and environmental conditions. Intermediates produced by cellular metabolic pathways are used as cofactors or substrates for chromatin modification. Drug analogues of metabolites that regulate chromatin-modifying enzyme reactions can also regulate cell fate by adjusting chromatin organization. In recent years, there have been many studies about how chromatin-modifying drug molecules or metabolites can interact with chromatin to regulate cell fate. In this review, we systematically discuss how DNA and histone-modifying molecules alter cell fate by regulating chromatin conformation and propose a mechanistic model that explains the process of cell fate transitions in a concise and qualitative manner.
Collapse
Affiliation(s)
- Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Enhanced SMARCD1, a subunit of the SWI/SNF complex, promotes liver cancer growth through the mTOR pathway. Clin Sci (Lond) 2020; 134:1457-1472. [PMID: 32514535 DOI: 10.1042/cs20200244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
The chromatin remodeling complex SWI/SNF regulates the accessibility of target genes to transcription factors and plays a critical role in the tumorigenesis of hepatocellular carcinoma (HCC). The SWI/SNF complex is assembled from approximately 15 subunits, and most of these subunits have distinct roles and are often aberrantly expressed in HCC. A comprehensive exploration of the expression and clinical significance of these subunits would be of great value. In the present study, we obtained the gene expression profile of each SWI/SNF subunit and the corresponding clinical information from The Cancer Genome Atlas (TCGA). We found that 14 out of the 15 SWI/SNF subunits were significantly increased in HCC tissues compared with paired normal liver tissues, and 11 subunits were significantly associated with overall survival (OS). We identified a four-gene prognostic signature including actin-like 6A (ACTL6A), AT-rich interaction domain 1A (ARID1A), SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily C member 1 (SMARCC1) and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 1 (SMARCD1) that could effectively predict OS in HCC patients. Among the genes, SMARCD1 has the most prognostic value. We further conducted in vitro and in vivo experiments and revealed that SMARCD1 promotes liver cancer growth by activating the mTOR signaling pathway. In conclusion, our study has revealed that the expression of SWI/SNF complex subunits, especially SMARCD1, is highly associated with HCC development and acts as a promising prognostic predictor.
Collapse
|
23
|
Daneshvar K, Ardehali MB, Klein IA, Hsieh FK, Kratkiewicz AJ, Mahpour A, Cancelliere SOL, Zhou C, Cook BM, Li W, Pondick JV, Gupta SK, Moran SP, Young RA, Kingston RE, Mullen AC. lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol 2020; 22:1211-1222. [PMID: 32895492 PMCID: PMC8008247 DOI: 10.1038/s41556-020-0572-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2020] [Indexed: 01/19/2023]
Abstract
Cooperation between DNA, RNA and protein regulates gene expression and controls differentiation through interactions that connect regions of nucleic acids and protein domains and through the assembly of biomolecular condensates. Here, we report that endoderm differentiation is regulated by the interaction between the long non-coding RNA (lncRNA) DIGIT and the bromodomain and extraterminal domain protein BRD3. BRD3 forms phase-separated condensates of which the formation is promoted by DIGIT, occupies enhancers of endoderm transcription factors and is required for endoderm differentiation. BRD3 binds to histone H3 acetylated at lysine 18 (H3K18ac) in vitro and co-occupies the genome with H3K18ac. DIGIT is also enriched in regions of H3K18ac, and the depletion of DIGIT results in decreased recruitment of BRD3 to these regions. Our findings show that cooperation between DIGIT and BRD3 at regions of H3K18ac regulates the transcription factors that drive endoderm differentiation and suggest that protein-lncRNA phase-separated condensates have a broader role as regulators of transcription.
Collapse
Affiliation(s)
- Kaveh Daneshvar
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M Behfar Ardehali
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Fu-Kai Hsieh
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Arcadia J Kratkiewicz
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Amin Mahpour
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Wenyang Li
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joshua V Pondick
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sweta K Gupta
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sean P Moran
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
24
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
25
|
Chang Z, Zhao G, Zhao Y, Lu H, Xiong W, Liang W, Sun J, Wang H, Zhu T, Rom O, Guo Y, Fan Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Arterioscler Thromb Vasc Biol 2020; 40:2494-2507. [PMID: 32787523 DOI: 10.1161/atvbaha.120.314955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.
Collapse
Affiliation(s)
- Ziyi Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor.,Department of Metabolism and Endocrinology (Z.C.), The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Wenhao Xiong
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jinjian Sun
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor.,Department of Cardiovascular Medicine (J.S.), The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Huilun Wang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Tianqing Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yanbo Fan
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Bo Yang
- Department of Cardiac Surgery (B.Y.), University of Michigan Medical Center, Ann Arbor
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor (J.D.L.)
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
26
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
27
|
Adduri RSR, George SA, Kavadipula P, Bashyam MD. SMARCD1
is a transcriptional target of specific non‐hotspot mutant p53 forms. J Cell Physiol 2019; 235:4559-4570. [DOI: 10.1002/jcp.29332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Raju S. R. Adduri
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Graduate Studies Manipal Academy of Higher Education Manipal Karnataka India
| | - Sara A. George
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Graduate Studies Regional Centre for Biotechnology Faridabad Haryana India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
| | - Murali D. Bashyam
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Adjunct Faculty Regional Centre for Biotechnology Faridabad Haryana India
| |
Collapse
|
28
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
29
|
Aras S, Saladi SV, Basuroy T, Marathe HG, Lorès P, de la Serna IL. BAF60A mediates interactions between the microphthalmia-associated transcription factor and the BRG1-containing SWI/SNF complex during melanocyte differentiation. J Cell Physiol 2018; 234:11780-11791. [PMID: 30515787 DOI: 10.1002/jcp.27840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/07/2018] [Indexed: 01/10/2023]
Abstract
SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.
Collapse
Affiliation(s)
- Shweta Aras
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Srinivas Vinod Saladi
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Tupa Basuroy
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Himangi G Marathe
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Patrick Lorès
- INSERM U1016, Institut Cochin/CNRS UMR8104/ Universite Paris Descartes, Faculte de Medecine Cochin, Paris, France
| | - Ivana L de la Serna
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
30
|
Rane JK, Erb HHH, Nappo G, Mann VM, Simms MS, Collins AT, Visakorpi T, Maitland NJ. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget 2018; 7:51965-51980. [PMID: 27340920 PMCID: PMC5239528 DOI: 10.18632/oncotarget.10207] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy is a major primary treatment option for both localized early stage prostate cancer, and for advanced, regionally un-resectable, cancer. However, around 30% of patients still experience biochemical recurrence after radiation therapy within 10 years. Thus, identification of better biomarkers and new targets are urgently required to improve current therapeutic strategies. The miR-99 family has been shown to play an important role in the regulation of the DNA damage response, via targeting of the SWI/SNF chromatin remodeling factors, SMARCA5 and SMARCD1 in cell line models. In the present study, we have demonstrated that low expression of miR-99a and miR-100 is present in cell populations which are relatively radiation insensitive, for example in prostate cancer stem cells and in castration-resistant prostate cancer. Additionally, treatment of cells with the synthetic glucocorticoid, Dexamethasone resulted in decreased miR-99a and 100 expression, suggesting a new mechanism of miR-99a and 100 regulation in androgen-independent prostate cells. Strikingly, treatment of prostate cells with the glucocorticoid receptor inhibitor, Mifepristone was found to sensitize prostate cells to radiation by increasing the levels of miR-99a and miR-100. These results qualify the miR99 family as markers of radiation sensitivity and as potential therapeutic targets to improve efficiency of radiotherapy.
Collapse
Affiliation(s)
- Jayant K Rane
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Rayne Institute, London, SE5 9NU, UK
| | - Holger H H Erb
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Giovanna Nappo
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Vincent M Mann
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Matthew S Simms
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Anne T Collins
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere and Tampere University Hospital, Tampere, 33520 Finland
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK
| |
Collapse
|
31
|
Cabot B, Tseng YC, Crodian JS, Cabot R. Differential expression of key subunits of SWI/SNF chromatin remodeling complexes in porcine embryos derived in vitro or in vivo. Mol Reprod Dev 2017; 84:1238-1249. [PMID: 29024220 PMCID: PMC5760298 DOI: 10.1002/mrd.22922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
In vitro embryo production is an established method for both humans and animals, but is fraught with inferior development and health issues in offspring born after in vitro fertilization procedures. Analysis of epigenetic changes caused by exposure to in vitro conditions should shed light on potential sources of these phenotypes. Using immunocytochemistry, we investigated the localization and relative abundance of components associated with the SWI/SNF (Switch/Sucrose non‐fermentable) chromatin‐remodeling complex—including BAF155, BAF170, BAF180, BAF53A, BAF57, BAF60A, BAF45D, ARID1A, ARID1B, ARID2, SNF5, and BRD7—in oocytes and in in vitro‐produced and in vivo‐derived porcine embryos. Differences in the localization of BAF155, BAF170, BAF60A, and ARID1B among these sources indicate that improper timing of chromatin remodeling and cellular differentiation might occur in early preimplantation embryos produced and cultured in vitro.
Collapse
Affiliation(s)
- Birgit Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Yu-Chun Tseng
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jennifer S Crodian
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Ryan Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
32
|
Hota SK, Bruneau BG. ATP-dependent chromatin remodeling during mammalian development. Development 2017; 143:2882-97. [PMID: 27531948 DOI: 10.1242/dev.128892] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues. Here, we review the functions of chromatin remodelers and their different subunits during mammalian development. We discuss the mechanisms by which chromatin remodelers function and highlight their specificities during mammalian cell differentiation and organogenesis.
Collapse
Affiliation(s)
- Swetansu K Hota
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, CA 94143, USA Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Screening of the prognostic targets for breast cancer based co-expression modules analysis. Mol Med Rep 2017; 16:4038-4044. [PMID: 28731166 PMCID: PMC5646985 DOI: 10.3892/mmr.2017.7063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/23/2017] [Indexed: 12/28/2022] Open
Abstract
The purpose of the present study was to screen the prognostic targets for breast cancer based on a co-expression modules analysis. The microarray dataset GSE73383 was downloaded from the Gene Expression Omnibus (GEO) database, including 15 breast cancer samples with good prognosis and 9 breast cancer samples with poor prognosis. The differentially expressed genes (DEGs) were identified with the limma package. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Furthermore, the co-expression analysis of DEGs was conducted with weighted correlation analysis. The interaction associations were analyzed with the Human Protein Reference Database and BioGRID. The protein-protein interactions (PPI) network was constructed and visualized by Cytoscape software. A total of 491 DEGs were identified in breast cancer samples with poor prognosis compared with those with good prognosis, and they were enriched in 85 GO terms and 4 KEGG pathways. 368 DEGs were co-expressed with others, and they were clustered into 10 modules. Module 6 was the most relevant to the clinical features, and 21 genes and 273 interaction pairs were selected out. Abnormal expression levels of required for meiotic nuclear division 5 homolog A (RMND5A) and angiopoietin-like protein 1 (ANGPTL1) were associated with a poor prognosis. It was indicated that SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 1, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 1, dihydropyrimidinase-like 2, RMND5A and ANGPTL1 were potential prognostic markers in breast cancer, and the cell cycle may be involved in the regulation of breast cancer.
Collapse
|
34
|
Priam P, Krasteva V, Rousseau P, D'Angelo G, Gaboury L, Sauvageau G, Lessard JA. SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPɛ dependent mechanism. Nat Genet 2017; 49:753-764. [PMID: 28369034 DOI: 10.1038/ng.3812] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022]
Abstract
Recent studies suggest that individual subunits of chromatin-remodeling complexes produce biologically specific meaning in different cell types through combinatorial assembly. Here we show that granulocyte development requires SMARCD2, a subunit of ATP-dependent SWI/SNF (BAF) chromatin-remodeling complexes. Smarcd2-deficient mice fail to generate functionally mature neutrophils and eosinophils, a phenotype reminiscent of neutrophil-specific granule deficiency (SGD) in humans, for which loss-of-function mutations in CEBPE (encoding CEBPɛ) have been reported. SMARCD2-containing SWI/SNF complexes are necessary for CEBPɛ transcription factor recruitment to the promoter of neutrophilic secondary granule genes and for granulocyte differentiation. The homologous SMARCD1 protein (63% identical at the amino acid level) cannot replace the role of SMARCD2 in granulocyte development. We find that SMARCD2 functional specificity is conferred by its divergent coiled-coil 1 and SWIB domains. Strikingly, both CEBPE and SMARCD2 loss-of-function mutations identified in patients with SGD abolish the interaction with SWI/SNF and thereby secondary granule gene expression, thus providing a molecular basis for this disease.
Collapse
Affiliation(s)
- Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Philippe Rousseau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Giovanni D'Angelo
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, Puchałka J, Mertes C, Gagneur J, Ziegenhain C, Enard W, Stray-Pedersen A, Arkwright PD, Abboud MR, Pazhakh V, Lieschke GJ, Krawitz PM, Dahlhoff M, Schneider MR, Wolf E, Horny HP, Schmidt H, Schäffer AA, Klein C. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 2017; 49:742-752. [PMID: 28369036 DOI: 10.1038/ng.3833] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/10/2017] [Indexed: 02/06/2023]
Abstract
We identify SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2), also known as BAF60b (BRG1/Brahma-associated factor 60b), as a critical regulator of myeloid differentiation in humans, mice, and zebrafish. Studying patients from three unrelated pedigrees characterized by neutropenia, specific granule deficiency, myelodysplasia with excess of blast cells, and various developmental aberrations, we identified three homozygous loss-of-function mutations in SMARCD2. Using mice and zebrafish as model systems, we showed that SMARCD2 controls early steps in the differentiation of myeloid-erythroid progenitor cells. In vitro, SMARCD2 interacts with the transcription factor CEBPɛ and controls expression of neutrophil proteins stored in specific granules. Defective expression of SMARCD2 leads to transcriptional and chromatin changes in acute myeloid leukemia (AML) human promyelocytic cells. In summary, SMARCD2 is a key factor controlling myelopoiesis and is a potential tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Maximilian Witzel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ehsan Bahrami
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Mertes
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julien Gagneur
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Peter D Arkwright
- Department of Paediatric Allergy and Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter M Krawitz
- Medical Genetics and Human Genetic, Charite University Hospital, Berlin, Germany
| | - Maik Dahlhoff
- Molecular Animal Breeding and Biotechnology, Gene Center Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlon R Schneider
- Molecular Animal Breeding and Biotechnology, Gene Center Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Peter Horny
- Pathology Institute, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Schmidt
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
36
|
BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription. Am J Hum Genet 2016; 99:253-74. [PMID: 27453576 PMCID: PMC4974071 DOI: 10.1016/j.ajhg.2016.05.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.
Collapse
|
37
|
Wierer M, Mann M. Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet 2016; 25:R106-R114. [PMID: 27402878 PMCID: PMC5036873 DOI: 10.1093/hmg/ddw208] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/24/2016] [Indexed: 01/30/2023] Open
Abstract
High-resolution mass spectrometry (MS)-based proteomics is a powerful method for the identification of soluble protein complexes and large-scale affinity purification screens can decode entire protein interaction networks. In contrast, protein complexes residing on chromatin have been much more challenging, because they are difficult to purify and often of very low abundance. However, this is changing due to recent methodological and technological advances in proteomics. Proteins interacting with chromatin marks can directly be identified by pulldowns with synthesized histone tails containing posttranslational modifications (PTMs). Similarly, pulldowns with DNA baits harbouring single nucleotide polymorphisms or DNA modifications reveal the impact of those DNA alterations on the recruitment of transcription factors. Accurate quantitation – either isotope-based or label free – unambiguously pinpoints proteins that are significantly enriched over control pulldowns. In addition, protocols that combine classical chromatin immunoprecipitation (ChIP) methods with mass spectrometry (ChIP-MS) target gene regulatory complexes in their in-vivo context. Similar to classical ChIP, cells are crosslinked with formaldehyde and chromatin sheared by sonication or nuclease digested. ChIP-MS baits can be proteins in tagged or endogenous form, histone PTMs, or lncRNAs. Locus-specific ChIP-MS methods would allow direct purification of a single genomic locus and the proteins associated with it. There, loci can be targeted either by artificial DNA-binding sites and corresponding binding proteins or via proteins with sequence specificity such as TAL or nuclease deficient Cas9 in combination with a specific guide RNA. We predict that advances in MS technology will soon make such approaches generally applicable tools in epigenetics.
Collapse
Affiliation(s)
- Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
38
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
39
|
Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 2015; 16:1609-19. [PMID: 26553936 DOI: 10.15252/embr.201541011] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 11/09/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are characterized by distinct epigenetic features including a relative enrichment of histone modifications related to active chromatin. Among these is tri-methylation of lysine 4 on histone H3 (H3K4me3). Several thousands of the H3K4me3-enriched promoters in pluripotent cells also contain a repressive histone mark, namely H3K27me3, a situation referred to as "bivalency". While bivalent promoters are not unique to pluripotent cells, they are relatively enriched in these cell types, largely marking developmental and lineage-specific genes which are silent but poised for immediate action. The H3K4me3 and H3K27me3 modifications are catalyzed by lysine methyltransferases which are usually found within, although not entirely limited to, the Trithorax group (TrxG) and Polycomb group (PcG) protein complexes, respectively, but these do not provide selective bivalent specificity. Recent studies highlight the family of ATP-dependent chromatin remodeling proteins as regulators of bivalent domains. Here, we discuss bivalency in general, describe the machineries that catalyze bivalent chromatin domains, and portray the emerging connection between bivalency and the action of different families of chromatin remodelers, namely INO80, esBAF, and NuRD, in pluripotent cells. We posit that chromatin remodeling proteins may enable "bivalent specificity", often selectively acting on, or selectively depleted from, bivalent domains.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
40
|
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol 2015; 16:213. [PMID: 26415775 PMCID: PMC4587738 DOI: 10.1186/s13059-015-0760-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
Background Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0760-8) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Kfir N, Lev-Maor G, Glaich O, Alajem A, Datta A, Sze S, Meshorer E, Ast G. SF3B1 Association with Chromatin Determines Splicing Outcomes. Cell Rep 2015; 11:618-29. [DOI: 10.1016/j.celrep.2015.03.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 01/08/2023] Open
|