1
|
Taguchi H, Niwa T. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation. J Mol Biol 2024; 436:168726. [PMID: 39074633 DOI: 10.1016/j.jmb.2024.168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Protein folding is crucial for achieving functional three-dimensional structures. However, the process is often hampered by aggregate formation, necessitating the presence of chaperones and quality control systems within the cell to maintain protein homeostasis. Despite a long history of folding studies involving the denaturation and subsequent refolding of translation-completed purified proteins, numerous facets of cotranslational folding, wherein nascent polypeptides are synthesized by ribosomes and folded during translation, remain unexplored. Cell-free protein synthesis (CFPS) systems are invaluable tools for studying cotranslational folding, offering a platform not only for elucidating mechanisms but also for large-scale analyses to identify aggregation-prone proteins. This review provides an overview of the extensive use of CFPS in folding studies to date. In particular, we discuss a comprehensive aggregation formation assay of thousands of Escherichia coli proteins conducted under chaperone-free conditions using a reconstituted translation system, along with its derived studies.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
Luo P, Liu Z, Lai C, Jin Z, Wang M, Zhao H, Liu Y, Zhang W, Wang X, Xiao C, Yang X, Wang F. Time-Resolved Ultraviolet Photodissociation Mass Spectrometry Probes the Mutation-Induced Alterations in Protein Stability and Unfolding Dynamics. J Am Chem Soc 2024; 146:8832-8838. [PMID: 38507251 DOI: 10.1021/jacs.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiong Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hu J, Fan L, Huang Y, He P, He L, Zhao J. Novel Strategy for In Vitro Validation of Babesia orientalis Heat Shock Proteins Chaperone Activity and Thermostability. Acta Parasitol 2024; 69:591-598. [PMID: 38240997 DOI: 10.1007/s11686-023-00775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/04/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Babesia orientalis is an intra-erythrocytic protozoan parasite that causes babesiosis in water buffalo. The genome of B. orientalis has been reported and various genes have been accurately annotated, including heat shock proteins (HSP). Three B. orientalis HSPs (HSP90, HSP70 and HSP20) have been previously identified as potential antigenic targets. Here, a new validation strategy for the chaperone activities and cell protection characteristics of the three HSPs was developed in vitro. METHODS BoHSP20, BoHSP70 and BoHSP90B were amplified from cDNA, followed by cloning them into the pEGFP-N1 vector and transfecting the vector plasmid separately into 293T and Hela mammalian cells. Their expression and localization were determined by fluorescence microscopy. The biological functions and protein stability were testified through an analysis of the fluorescence intensity duration. Their role in the protection of cell viability from heat-shock treatments was examined by MTT assay (cell proliferation assay based on thiazolyl blue tetrazolium bromide). RESULTS Fusion proteins pEGFP-N1-BoHSP20, pEGFP-N1-BoHSP70, and pEGFP-N1-BoHSP90B (pBoHSPs: pBoHSP20; pBoHSP70 and pBoHSP90B) were identified as 47 kDa/97 kDa/118 kDa with a 27 kDa GFP tag, respectively. Prolonged fluorescent protein half-time was observed specifically in pBoHSPs under heat shock treatment at 55 °C, and BoHSP20 showed relatively better thermotolerance than BoHSP70 and BoHSP90B. Significant difference was found between pBoHSPs and controls in the cell survival curve after 2 h of 45 °C heat shock. CONCLUSION Significant biological properties of heat stress-associated genes of B. orientalis were identified in eukaryote by a new strategy. Fusion proteins pBoHSP20, pBoHSP70 and pBoHSP90B showed good chaperone activity and thermo-stability in this study, implying that BoHSPs played a key role in protecting B. orientalis against heat-stress environment during parasite life cycle. In conclusion, the in vitro model explored in this study provides a new way to investigate the biological functions of B. orientalis proteins during the host-parasite interaction.
Collapse
Affiliation(s)
- Jinfang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, Guangdong, China
| | - Lizhe Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Liang B, Song Z, Chen W, Niu H, Xing D, Zhang Y. High antipersister activity of a promising new quinolone drug candidate in eradicating uropathogenic Escherichia coli persisters and persistent infection in mice. J Appl Microbiol 2023; 134:lxad193. [PMID: 37667517 DOI: 10.1093/jambio/lxad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
AIMS To develop more potent drugs that eradicate persister bacteria and cure persistent urinary tract infections (rUTIs). METHODS AND RESULTS We synthesized eight novel clinifloxacin analogs and measured minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), the time-kill curves in uropathogenic Escherichia coli (UPEC) UTI89, and applied the candidate drugs and combinations against biofilm bacteria in vitro and in mice. Transcriptomic analysis was performed for UPEC after candidate drug treatment to shed light on potential mechanism of action. We identified Compound 2, named Qingdafloxacin (QDF), which was more potent than clinafloxacin and clinically used levofloxacin and moxifloxacin, with an MIC of < 0.04 μg ml-1 and an MBC of 0.08∼0.16 μg ml-1. In drug combination studies, QDF + gentamicin + nitrofuran combination but not single drugs completely eradicated all stationary phase bacteria containing persisters and biofilm bacteria, and all bacteria in a persistent UTI mouse model. Transcriptome analysis revealed that the unique antipersister activity of QDF was associated with downregulation of genes involved in bacterial stress response, DNA repair, protein misfolding repair, pyrimidine metabolism, glutamate, and glutathione metabolism, and efflux. CONCLUSIONS QDF has high antipersister activity and its drug combinations proved highly effective against biofilm bacteria in vitro and persistent UTIs in mice, which may have implications for treating rUTIs.
Collapse
Affiliation(s)
- Yanyan Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Zhengming Song
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Hongxia Niu
- Institute of Pathogenic Biology, School of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
5
|
Wang M, Zhang Z, Jing B, Dong X, Guo K, Deng J, Wang Z, Wan W, Jin W, Gao Z, Liu Y. Tailoring the Amphiphilicity of Fluorescent Protein Chromophores to Detect Intracellular Proteome Aggregation in Diverse Biological Samples. Anal Chem 2023; 95:11751-11760. [PMID: 37506028 DOI: 10.1021/acs.analchem.3c01903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The formation of amorphous misfolded and aggregated proteins is a hallmark of proteome stress in diseased cells. Given its lack of defined targeting sites, the rational design of intracellular proteome aggregation sensors has been challenging. Herein, we modulate the amphiphilicity of fluorescent protein chromophores to enable selective detection of aggregated proteins in different biological samples, including recombinant proteins, stressed live cells, intoxicated mouse liver tissue, and human hepatocellular carcinoma tissue. By tuning the number of hydroxyl groups, we optimize the selectivity of fluorescent protein chromophores toward aggregated proteins in these biological samples. In recombinant protein applications, the most hydrophobic P0 (cLogP = 5.28) offers the highest fold change (FC = 31.6), sensitivity (LLOD = 0.1 μM), and brightness (Φ = 0.20) upon binding to aggregated proteins. In contrast, P4 of balanced amphiphilicity (cLogP = 2.32) is required for selective detection of proteome stresses in live cells. In mouse and human liver histology tissues, hydrophobic P1 exhibits the best performance in staining the aggregated proteome. Overall, the amphiphilicity of fluorescent chromophores governs the sensor's performance by matching the diverse nature of different biological samples. Together with common extracellular amyloid sensors (e.g., Thioflavin T), these sensors developed herein for intracellular amorphous aggregation complement the toolbox to study protein aggregation.
Collapse
Affiliation(s)
- Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenduo Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Biao Jing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jintai Deng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhiming Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
6
|
Zhang H, Chen C, Yang Z, Ye L, Miao J, Lan Y, Wang Q, Ye Z, Cao Y, Liu G. Combined transcriptomic and proteomic analysis of the antibacterial mechanisms of an antimicrobial substance produced by Lactobacillus paracasei FX-6 against colistin-resistant Escherichia coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Lambros M, Pechuan-Jorge X, Biro D, Ye K, Bergman A. Emerging Adaptive Strategies Under Temperature Fluctuations in a Laboratory Evolution Experiment of Escherichia Coli. Front Microbiol 2021; 12:724982. [PMID: 34745030 PMCID: PMC8569431 DOI: 10.3389/fmicb.2021.724982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Generalists and specialists are types of strategies individuals can employ that can evolve in fluctuating environments depending on the extremity and periodicity of the fluctuation. To evaluate whether the evolution of specialists or generalists occurs under environmental fluctuation regimes with different levels of periodicity, 24 populations of Escherichia coli underwent laboratory evolution with temperatures alternating between 15 and 43°C in three fluctuation regimes: two periodic regimes dependent on culture's cell density and one random (non-periodic) regime with no such dependency, serving as a control. To investigate contingencies on the genetic background, we seeded our experiment with two different strains. After the experiment, growth rate measurements at the two temperatures showed that the evolution of specialists was favored in the random regime, while generalists were favored in the periodic regimes. Whole genome sequencing demonstrated that several gene mutations were selected in parallel in the evolving populations with some dependency on the starting genetic background. Given the genes mutated, we hypothesized that the driving force behind the observed adaptations is the restoration of the internal physiology of the starting strains' unstressed states at 37°C, which may be a means of improving fitness in the new environments. Phenotypic array measurements supported our hypothesis by demonstrating a tendency of the phenotypic response of the evolved strains to move closer to the starting strains' response at the optimum of 37°C, especially for strains classified as generalists.
Collapse
Affiliation(s)
- Maryl Lambros
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ximo Pechuan-Jorge
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daniel Biro
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kenny Ye
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States.,Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
8
|
Merli ML, Padgett-Pagliai KA, Cuaycal AE, Garcia L, Marano MR, Lorca GL, Gonzalez CF. ' Candidatus Liberibacter asiaticus' Multimeric LotP Mediates Citrus sinensis Defense Response Activation. Front Microbiol 2021; 12:661547. [PMID: 34421834 PMCID: PMC8371691 DOI: 10.3389/fmicb.2021.661547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
‘Candidatus Liberibacter asiaticus’ is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, ‘Ca. L. asiaticus’ remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with ‘Ca. L. asiaticus.’ LotP has been identified as a potential effector and have been partially characterized. This protein retains structural homology to the substrate binding domain of the Lon protease. LotP interacts with chaperones like GroEL, Hsp40, DnaJ, and ClpX and may exercise its biological role through interactions with different proteins involved in proteostasis networks. Here, we evaluate the interactome of LotP—revealing a new protein–protein interaction target (Lon-serine protease) and its effect on citrus plant tissue integrity. We found that via protein–protein interactions, LotP can enhance Lon protease activity, increasing the degradation rate of its specific targets. Infiltration of purified LotP strained citrus plant tissue causing photoinhibition and chlorosis after several days. Proteomics analysis of LotP tissues recovering after the infiltration revealed a large abundance of plant proteins associated with the stabilization and processing of mRNA transcripts, a subset of important transcription factors; and pathways associated with innate plant defense were highly expressed. Furthermore, interactions and substrate binding module of LotP suggest potential interactions with plant proteins, most likely proteases.
Collapse
Affiliation(s)
- Marcelo L Merli
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandra E Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Lucila Garcia
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Maria Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
10
|
Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol 2021; 433:167197. [PMID: 34391802 DOI: 10.1016/j.jmb.2021.167197] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
Stunning advances have been achieved in addressing the protein folding problem, providing deeper understanding of the mechanisms by which proteins navigate energy landscapes to reach their native states and enabling powerful algorithms to connect sequence to structure. However, the realities of the in vivo protein folding problem remain a challenge to reckon with. Here, we discuss the concept of the "proteome folding problem"-the problem of how organisms build and maintain a functional proteome-by admitting that folding energy landscapes are characterized by many misfolded states and that cells must deploy a network of chaperones and degradation enzymes to minimize deleterious impacts of these off-pathway species. The resulting proteostasis network is an inextricable part of in vivo protein folding and must be understood in detail if we are to solve the proteome folding problem. We discuss how the development of computational models for the proteostasis network's actions and the relationship to the biophysical properties of the proteome has begun to offer new insights and capabilities.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Zhao L, Castanié-Cornet MP, Kumar S, Genevaux P, Hayer-Hartl M, Hartl FU. Bacterial RF3 senses chaperone function in co-translational folding. Mol Cell 2021; 81:2914-2928.e7. [PMID: 34107307 DOI: 10.1016/j.molcel.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/05/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Sneha Kumar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
12
|
Bai Y, Wan W, Huang Y, Jin W, Lyu H, Xia Q, Dong X, Gao Z, Liu Y. Quantitative interrogation of protein co-aggregation using multi-color fluorogenic protein aggregation sensors. Chem Sci 2021; 12:8468-8476. [PMID: 34221329 PMCID: PMC8221170 DOI: 10.1039/d1sc01122g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Co-aggregation of multiple pathogenic proteins is common in neurodegenerative diseases but deconvolution of such biochemical process is challenging. Herein, we developed a dual-color fluorogenic thermal shift assay to simultaneously report on the aggregation of two different proteins and quantitatively study their thermodynamic stability during co-aggregation. Expansion of spectral coverage was first achieved by developing multi-color fluorogenic protein aggregation sensors. Orthogonal detection was enabled by conjugating sensors of minimal fluorescence crosstalk to two different proteins via sortase-tag technology. Using this assay, we quantified shifts in melting temperatures in a heterozygous model protein system, revealing that the thermodynamic stability of wild-type proteins was significantly compromised by the mutant ones but not vice versa. We also examined how small molecule ligands selectively and differentially interfere with such interplay. Finally, we demonstrated these sensors are suited to visualize how different proteins exert influence on each other upon their co-aggregation in live cells.
Collapse
Affiliation(s)
- Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
13
|
Inorganic Polyphosphate in Host and Microbe Biology. Trends Microbiol 2021; 29:1013-1023. [PMID: 33632603 DOI: 10.1016/j.tim.2021.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Inorganic polyphosphate (polyP) is produced by both bacteria and their eukaryotic hosts, and it appears to play multiple important roles in the interactions between those organisms. However, the detailed mechanisms of how polyP synthesis is regulated in bacteria, and how it influences both bacterial and host biology, remain largely unexplored. In this review, we examine recent developments in the understanding of how bacteria regulate the synthesis of polyP, what roles polyP plays in controlling virulence in pathogenic bacteria, and the effects of polyP on the mammalian immune system, as well as progress on developing drugs that may be able to target bacterial polyP synthesis as novel means of treating infectious disease.
Collapse
|
14
|
Effect of Protein Structure on Evolution of Cotranslational Folding. Biophys J 2020; 119:1123-1134. [PMID: 32857962 DOI: 10.1016/j.bpj.2020.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Cotranslational folding depends on the folding speed and stability of the nascent protein. It remains difficult, however, to predict which proteins cotranslationally fold. Here, we simulate evolution of model proteins to investigate how native structure influences evolution of cotranslational folding. We developed a model that connects protein folding during and after translation to cellular fitness. Model proteins evolved improved folding speed and stability, with proteins adopting one of two strategies for folding quickly. Low contact order proteins evolve to fold cotranslationally. Such proteins adopt native conformations early on during the translation process, with each subsequently translated residue establishing additional native contacts. On the other hand, high contact order proteins tend not to be stable in their native conformations until the full chain is nearly extruded. We also simulated evolution of slowly translating codons, finding that slower translation speeds at certain positions enhances cotranslational folding. Finally, we investigated real protein structures using a previously published data set that identified evolutionarily conserved rare codons in Escherichia coli genes and associated such codons with cotranslational folding intermediates. We found that protein substructures preceding conserved rare codons tend to have lower contact orders, in line with our finding that lower contact order proteins are more likely to fold cotranslationally. Our work shows how evolutionary selection pressure can cause proteins with local contact topologies to evolve cotranslational folding.
Collapse
|
15
|
Thompson S, Zhang Y, Ingle C, Reynolds KA, Kortemme T. Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. eLife 2020; 9:53476. [PMID: 32701056 PMCID: PMC7377907 DOI: 10.7554/elife.53476] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/09/2020] [Indexed: 12/03/2022] Open
Abstract
Protein mutational landscapes are shaped by the cellular environment, but key factors and their quantitative effects are often unknown. Here we show that Lon, a quality control protease naturally absent in common E. coli expression strains, drastically reshapes the mutational landscape of the metabolic enzyme dihydrofolate reductase (DHFR). Selection under conditions that resolve highly active mutants reveals that 23.3% of all single point mutations in DHFR are advantageous in the absence of Lon, but advantageous mutations are largely suppressed when Lon is reintroduced. Protein stability measurements demonstrate extensive activity-stability tradeoffs for the advantageous mutants and provide a mechanistic explanation for Lon’s widespread impact. Our findings suggest possibilities for tuning mutational landscapes by modulating the cellular environment, with implications for protein design and combatting antibiotic resistance.
Collapse
Affiliation(s)
- Samuel Thompson
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, United States
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States
| | - Christine Ingle
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, United States.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
16
|
Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett 2020; 594:2770-2781. [PMID: 32446288 DOI: 10.1002/1873-3468.13844] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Collapse
Affiliation(s)
- David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
17
|
Barriot R, Latour J, Castanié-Cornet MP, Fichant G, Genevaux P. J-Domain Proteins in Bacteria and Their Viruses. J Mol Biol 2020; 432:3771-3789. [DOI: 10.1016/j.jmb.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
|
18
|
Dalphin MD, Stangl AJ, Liu Y, Cavagnero S. KLR-70: A Novel Cationic Inhibitor of the Bacterial Hsp70 Chaperone. Biochemistry 2020; 59:1946-1960. [PMID: 32326704 DOI: 10.1021/acs.biochem.0c00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat-shock factor Hsp70 and other molecular chaperones play a central role in nascent protein folding. Elucidating the task performed by individual chaperones within the complex cellular milieu, however, has been challenging. One strategy for addressing this goal has been to monitor protein biogenesis in the absence and presence of inhibitors of a specific chaperone, followed by analysis of folding outcomes under both conditions. In this way, the role of the chaperone of interest can be discerned. However, development of chaperone inhibitors, including well-known proline-rich antimicrobial peptides, has been fraught with undesirable side effects, including decreased protein expression yields. Here, we introduce KLR-70, a rationally designed cationic inhibitor of the Escherichia coli Hsp70 chaperone (also known as DnaK). KLR-70 is a 14-amino acid peptide bearing naturally occurring residues and engineered to interact with the DnaK substrate-binding domain. The interaction of KLR-70 with DnaK is enantioselective and is characterized by high affinity in a buffered solution. Importantly, KLR-70 does not significantly interact with the DnaJ and GroEL/ES chaperones, and it does not alter nascent protein biosynthesis yields across a wide concentration range. Some attenuation of the anti-DnaK activity of KLR-70, however, has been observed in the complex E. coli cell-free environment. Interestingly, the d enantiomer D-KLR-70, unlike its all-L KLR-70 counterpart, does not bind the DnaK and DnaJ chaperones, yet it strongly inhibits translation. This outcome suggests that the two enantiomers (KLR-70 and D-KLR-70) may serve as orthogonal inhibitors of chaperone binding and translation. In summary, KLR-70 is a novel chaperone inhibitor with high affinity and selectivity for bacterial Hsp70 and with considerable potential to help in parsing out the role of Hsp70 in nascent protein folding.
Collapse
Affiliation(s)
- Matthew D Dalphin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew J Stangl
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Hall D. On the nature of the optimal form of the holdase-type chaperone stress response. FEBS Lett 2019; 594:43-66. [PMID: 31432502 DOI: 10.1002/1873-3468.13580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
The holdase paradigm of chaperone action involves preferential binding by the chaperone to the unfolded protein state, thereby preventing it from either, associating with other unstable proteins (to form large dysfunctional aggregates), or being degraded by the proteolytic machinery of the cell/organism. In this paper, we examine the necessary physical constraints imposed upon the holdase chaperone response in a cell-like environment and use these limitations to comment on the likely nature of the optimal form of chaperone response in vivo.
Collapse
Affiliation(s)
- Damien Hall
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, MD, USA.,Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
20
|
Pobre KFR, Powers DL, Ghosh K, Gierasch LM, Powers ET. Kinetic versus thermodynamic control of mutational effects on protein homeostasis: A perspective from computational modeling and experiment. Protein Sci 2019; 28:1324-1339. [PMID: 31074892 DOI: 10.1002/pro.3639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023]
Abstract
The effect of mutations in individual proteins on protein homeostasis, or "proteostasis," can in principle depend on the mutations' effects on the thermodynamics or kinetics of folding, or both. Here, we explore this issue using a computational model of in vivo protein folding that we call FoldEcoSlim. Our model predicts that kinetic versus thermodynamic control of mutational effects on proteostasis hinges on the relationship between how fast a protein's folding reaction reaches equilibrium and a critical time scale that characterizes the lifetime of a protein in its environment: for rapidly dividing bacteria, this time scale is that of cell division; for proteins that are produced in heterologous expression systems, this time scale is the amount of time before the protein is harvested; for proteins that are synthesized in and then exported from the eukaryotic endoplasmic reticulum, this time scale is that of protein secretion, and so forth. This prediction was validated experimentally by examining the expression yields of the wild type and several destabilized mutants of a model protein, the mouse ortholog of cellular retinoic acid-binding protein 1.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - David L Powers
- Department of Mathematics, Clarkson University, Potsdam, New York, 13699
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, 80208
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037
| |
Collapse
|
21
|
Fernández C, Giraldo R. Modulation of the Aggregation of the Prion-like Protein RepA-WH1 by Chaperones in a Cell-Free Expression System and in Cytomimetic Lipid Vesicles. ACS Synth Biol 2018; 7:2087-2093. [PMID: 30125497 DOI: 10.1021/acssynbio.8b00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The accumulation of aggregated forms of proteins as toxic species is associated with fatal diseases such as amyloid proteinopathies. With the purpose of deconstructing the molecular mechanisms of these type of diseases through a Synthetic Biology approach, we are working with a model bacterial prion-like protein, RepA-WH1, expressed in a cell-free system. Our findings show that the Hsp70 chaperone from Escherichia coli, together with its Hsp40 and nucleotide exchange factor cochaperones, modulates the aggregation of the prion-like protein in the cell-free system. Moreover, we observe the same effect by reconstructing the aggregation process inside lipid vesicles. Chaperones reduce the number of aggregates formed, matching previous findings in vivo. We expect that the in vitro approach reported here will help to achieve better understanding and control of amyloid proteinopathies.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| |
Collapse
|
22
|
Freilich R, Arhar T, Abrams JL, Gestwicki JE. Protein-Protein Interactions in the Molecular Chaperone Network. Acc Chem Res 2018; 51:940-949. [PMID: 29613769 DOI: 10.1021/acs.accounts.8b00036] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones play a central role in protein homeostasis (a.k.a. proteostasis) by balancing protein folding, quality control, and turnover. To perform these diverse tasks, chaperones need the malleability to bind nearly any "client" protein and the fidelity to detect when it is misfolded. Remarkably, these activities are carried out by only ∼180 dedicated chaperones in humans. How do a relatively small number of chaperones maintain cellular and organismal proteostasis for an entire proteome? Furthermore, once a chaperone binds a client, how does it "decide" what to do with it? One clue comes from observations that individual chaperones engage in protein-protein interactions (PPIs)-both with each other and with their clients. These physical links coordinate multiple chaperones into organized, functional complexes and facilitate the "handoff" of clients between them. PPIs also link chaperones and their clients to other cellular pathways, such as those that mediate trafficking (e.g., cytoskeleton) and degradation (e.g., proteasome). The PPIs of the chaperone network have a wide range of affinity values (nanomolar to micromolar) and involve many distinct types of domain modules, such as J domains, zinc fingers, and tetratricopeptide repeats. Many of these motifs have the same binding surfaces on shared partners, such that members of one chaperone class often compete for the same interactions. Somehow, this collection of PPIs draws together chaperone families and creates multiprotein subnetworks that are able to make the "decisions" of protein quality control. The key to understanding chaperone-mediated proteostasis might be to understand how PPIs are regulated. This Account will discuss the efforts of our group and others to map, measure, and chemically perturb the PPIs within the molecular chaperone network. Structural biology methods, including X-ray crystallography, NMR spectroscopy, and electron microscopy, have all played important roles in visualizing the chaperone PPIs. Guided by these efforts and -omics approaches to measure PPIs, new advances in high-throughput chemical screening that are specially designed to account for the challenges of this system have emerged. Indeed, chemical biology has played a particularly important role in this effort, as molecules that either promote or inhibit specific PPIs have proven to be invaluable research probes in cells and animals. In addition, these molecules have provided leads for the potential treatment of protein misfolding diseases. One of the major products of this research field has been the identification of putative PPI drug targets within the chaperone network, which might be used to change chaperone "decisions" and rebalance proteostasis.
Collapse
Affiliation(s)
- Rebecca Freilich
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| | - Jennifer L. Abrams
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
23
|
Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. Trends Biotechnol 2018; 36:186-198. [DOI: 10.1016/j.tibtech.2017.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|
24
|
Chen K, Gao Y, Mih N, O'Brien EJ, Yang L, Palsson BO. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc Natl Acad Sci U S A 2017; 114:11548-11553. [PMID: 29073085 PMCID: PMC5664499 DOI: 10.1073/pnas.1705524114] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses.
Collapse
Affiliation(s)
- Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Ye Gao
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Nathan Mih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA 92093
| | - Edward J O'Brien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093;
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
25
|
Abstract
In vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments. A wide variety of kinetic and thermodynamics experiments, ranging from single-molecule studies to jump kinetics and from nuclear magnetic resonance to imaging on the microscope, have elucidated how protein energy landscapes facilitate folding and how they are subject to evolutionary constraints and environmental perturbation. Here we review some recent developments in the field and refer the reader to some original work and additional reviews that cover this broad topic in protein science.
Collapse
Affiliation(s)
- Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; , .,Department of Chemistry, University of Illinois, Urbana, Illinois 61801; .,Department of Physics, University of Illinois, Urbana, Illinois 61801
| | - Kapil Dave
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; ,
| | - Shahar Sukenik
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
26
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
27
|
Loto F, Coyle JF, Padgett KA, Pagliai FA, Gardner CL, Lorca GL, Gonzalez CF. Functional characterization of LotP from Liberibacter asiaticus. Microb Biotechnol 2017; 10:642-656. [PMID: 28378385 PMCID: PMC5404198 DOI: 10.1111/1751-7915.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.
Collapse
Affiliation(s)
- Flavia Loto
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,PROIMI Planta Piloto de Procesos Industriales Microbiológicos, CONICET, Tucumán, Argentina
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Kaylie A Padgett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,Department of Microbiology and Cell Science, Undergraduate Research Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
28
|
Bacterial proteostasis balances energy and chaperone utilization efficiently. Proc Natl Acad Sci U S A 2017; 114:E2654-E2661. [PMID: 28292901 DOI: 10.1073/pnas.1620646114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperones are protein complexes that help to fold and disaggregate a cell's proteins. It is not understood how four major chaperone systems of Escherichia coli work together in proteostasis: the recognition, sorting, folding, and disaggregating of the cell's many different proteins. Here, we model this machine. We combine extensive data on chaperoning, folding, and aggregation rates with expression levels of proteins and chaperones measured at different growth rates. We find that the proteostasis machine recognizes and sorts a client protein based on two biophysical properties of the client's misfolded state (M state): its stability and its kinetic accessibility from its unfolded state (U state). The machine is energy-efficient (the sickest proteins use the most ATP-expensive chaperones), comprehensive (it can handle any type of protein), and economical (the chaperone concentrations are just high enough to keep the whole proteome folded and disaggregated but no higher). The cell needs higher chaperone levels in two situations: fast growth (when protein production rates are high) and very slow growth (to mitigate the effects of protein degradation). This type of model complements experimental knowledge by showing how the various chaperones work together to achieve the broad folding and disaggregation needs of the cell.
Collapse
|
29
|
Ligand-promoted protein folding by biased kinetic partitioning. Nat Chem Biol 2017; 13:369-371. [PMID: 28218913 PMCID: PMC5362304 DOI: 10.1038/nchembio.2303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023]
Abstract
Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.
Collapse
|
30
|
Radwan M, Wood RJ, Sui X, Hatters DM. When proteostasis goes bad: Protein aggregation in the cell. IUBMB Life 2017; 69:49-54. [PMID: 28066979 DOI: 10.1002/iub.1597] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a hallmark of the major neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and motor neuron and is a symptom of a breakdown in the management of proteome foldedness. Indeed, it is remarkable that under normal conditions cells can keep their proteome in a highly crowded and confined space without uncontrollable aggregation. Proteins pose a particular challenge relative to other classes of biomolecules because upon synthesis they must typically follow a complex folding pathway to reach their functional conformation (native state). Non-native conformations, including the unfolded nascent chain, are highly prone to aberrant interactions, leading to aggregation. Here we review recent advances in knowledge of proteostasis, approaches to monitor proteostasis and the impact that protein aggregation has on biology. We also include discussion of the outstanding challenges. © 2017 IUBMB Life, 69(2):49-54, 2017.
Collapse
Affiliation(s)
- Mona Radwan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| | - Rebecca J Wood
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| | - Xiaojing Sui
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Bershtein S, Serohijos AW, Shakhnovich EI. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Curr Opin Struct Biol 2016; 42:31-40. [PMID: 27810574 DOI: 10.1016/j.sbi.2016.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 01/11/2023]
Abstract
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology.
Collapse
Affiliation(s)
- Shimon Bershtein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84501, Israel
| | - Adrian Wr Serohijos
- Département de Biochimie, Centre Robert-Cedergren en Bioinformatique & Génomique, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States.
| |
Collapse
|
32
|
Tryptophan Codon-Dependent Transcription in Chlamydia pneumoniae during Gamma Interferon-Mediated Tryptophan Limitation. Infect Immun 2016; 84:2703-13. [PMID: 27400720 DOI: 10.1128/iai.00377-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis.
Collapse
|
33
|
Salmon L, Ahlstrom LS, Horowitz S, Dickson A, Brooks CL, Bardwell JCA. Capturing a Dynamic Chaperone-Substrate Interaction Using NMR-Informed Molecular Modeling. J Am Chem Soc 2016; 138:9826-39. [PMID: 27415450 DOI: 10.1021/jacs.6b02382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chaperones maintain a healthy proteome by preventing aggregation and by aiding in protein folding. Precisely how chaperones influence the conformational properties of their substrates, however, remains unclear. To achieve a detailed description of dynamic chaperone-substrate interactions, we fused site-specific NMR information with coarse-grained simulations. Our model system is the binding and folding of a chaperone substrate, immunity protein 7 (Im7), with the chaperone Spy. We first used an automated procedure in which NMR chemical shifts inform the construction of system-specific force fields that describe each partner individually. The models of the two binding partners are then combined to perform simulations on the chaperone-substrate complex. The binding simulations show excellent agreement with experimental data from multiple biophysical measurements. Upon binding, Im7 interacts with a mixture of hydrophobic and hydrophilic residues on Spy's surface, causing conformational exchange within Im7 to slow down as Im7 folds. Meanwhile, the motion of Spy's flexible loop region increases, allowing for better interaction with different substrate conformations, and helping offset losses in Im7 conformational dynamics that occur upon binding and folding. Spy then preferentially releases Im7 into a well-folded state. Our strategy has enabled a residue-level description of a dynamic chaperone-substrate interaction, improving our understanding of how chaperones facilitate substrate folding. More broadly, we validate our approach using two other binding partners, showing that this approach provides a general platform from which to investigate other flexible biomolecular complexes through the integration of NMR data with efficient computational models.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Logan S Ahlstrom
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Scott Horowitz
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alex Dickson
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem Sci 2015; 41:62-76. [PMID: 26422689 DOI: 10.1016/j.tibs.2015.07.009] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 01/12/2023]
Abstract
The bacterial chaperonin GroEL and its cofactor GroES constitute the paradigmatic molecular machine of protein folding. GroEL is a large double-ring cylinder with ATPase activity that binds non-native substrate protein (SP) via hydrophobic residues exposed towards the ring center. Binding of the lid-shaped GroES to GroEL displaces the bound protein into an enlarged chamber, allowing folding to occur unimpaired by aggregation. GroES and SP undergo cycles of binding and release, regulated allosterically by the GroEL ATPase. Recent structural and functional studies are providing insights into how the physical environment of the chaperonin cage actively promotes protein folding, in addition to preventing aggregation. Here, we review different models of chaperonin action and discuss issues of current debate.
Collapse
|
35
|
Liu Y, Zhang X, Chen W, Tan YL, Kelly JW. Fluorescence Turn-On Folding Sensor To Monitor Proteome Stress in Live Cells. J Am Chem Soc 2015; 137:11303-11. [PMID: 26305239 PMCID: PMC4755273 DOI: 10.1021/jacs.5b04366] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteome misfolding and/or aggregation, caused by a thermal perturbation or a related stress, transiently challenges the cellular protein homeostasis (proteostasis) network capacity of cells by consuming chaperone/chaperonin pathway and degradation pathway capacity. Developing protein client-based probes to quantify the cellular proteostasis network capacity in real time is highly desirable. Herein we introduce a small-molecule-regulated fluorescent protein folding sensor based on a thermo-labile mutant of the de novo designed retroaldolase (RA) enzyme. Since RA enzyme activity is not present in any cell, the protein folding sensor is bioorthogonal. The fluorogenic small molecule was designed to become fluorescent when it binds to and covalently reacts with folded and functional RA. Thus, in the first experimental paradigm, cellular proteostasis network capacity and its dynamics are reflected by RA-small molecule conjugate fluorescence, which correlates with the amount of folded and functional RA present, provided that pharmacologic chaperoning is minimized. In the second experimental scenario, the RA-fluorogenic probe conjugate is pre-formed in a cell by simply adding the fluorogenic probe to the cell culture media. Unreacted probe is then washed away before a proteome misfolding stress is applied in a pulse-chase-type experiment. Insufficient proteostasis network capacity is reflected by aggregate formation of the fluorescent RA-fluorogenic probe conjugate. Removal of the stress results in apparent RA-fluorogenic probe conjugate re-folding, mediated in part by the heat-shock response transcriptional program augmenting cytosolic proteostasis network capacity, and in part by time-dependent RA-fluorogenic probe conjugate degradation by cellular proteolysis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, ‡Department of Molecular and Experimental Medicine, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Xin Zhang
- Department of Chemistry, ‡Department of Molecular and Experimental Medicine, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Wentao Chen
- Department of Chemistry, ‡Department of Molecular and Experimental Medicine, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Yun Lei Tan
- Department of Chemistry, ‡Department of Molecular and Experimental Medicine, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, ‡Department of Molecular and Experimental Medicine, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
36
|
Suss O, Reichmann D. Protein plasticity underlines activation and function of ATP-independent chaperones. Front Mol Biosci 2015; 2:43. [PMID: 26284255 PMCID: PMC4516975 DOI: 10.3389/fmolb.2015.00043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
One of the key issues in biology is to understand how cells cope with protein unfolding caused by changes in their environment. Self-protection is the natural immediate response to any sudden threat and for cells the critical issue is to prevent aggregation of existing proteins. Cellular response to stress is therefore indistinguishably linked to molecular chaperones, which are the first line of defense and function to efficiently recognize misfolded proteins and prevent their aggregation. One of the major protein families that act as cellular guards includes a group of ATP-independent chaperones, which facilitate protein folding without the consumption of ATP. This review will present fascinating insights into the diversity of ATP-independent chaperones, and the variety of mechanisms by which structural plasticity is utilized in the fine-tuning of chaperone activity, as well as in crosstalk within the proteostasis network. Research into this intriguing class of chaperones has introduced new concepts of stress response to a changing cellular environment, and paved the way to uncover how this environment affects protein folding.
Collapse
Affiliation(s)
- Ohad Suss
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
37
|
Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2015; 2:29. [PMID: 26097841 PMCID: PMC4456865 DOI: 10.3389/fmolb.2015.00029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3% of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold, and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|