1
|
Reitler P, Regan J, DeJarnette C, Srivastava A, Carnahan J, Tucker KM, Meibohm B, Peters BM, Palmer GE. The atypical antipsychotic aripiprazole alters the outcome of disseminated Candida albicans infections. Infect Immun 2024; 92:e0007224. [PMID: 38899880 PMCID: PMC11238555 DOI: 10.1128/iai.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.
Collapse
Affiliation(s)
- Parker Reitler
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jen Carnahan
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Katie M Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Li W, Feng Y, Feng Z, Wang L, Whiteway M, Lu H, Jiang Y. Pitavastatin Calcium Confers Fungicidal Properties to Fluconazole by Inhibiting Ubiquinone Biosynthesis and Generating Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:667. [PMID: 38929106 PMCID: PMC11200976 DOI: 10.3390/antiox13060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 μM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhe Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
3
|
Gil-Gomez A, Rest JS. Wiring Between Close Nodes in Molecular Networks Evolves More Quickly Than Between Distant Nodes. Mol Biol Evol 2024; 41:msae098. [PMID: 38768245 PMCID: PMC11136681 DOI: 10.1093/molbev/msae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
As species diverge, a wide range of evolutionary processes lead to changes in protein-protein interaction (PPI) networks and metabolic networks. The rate at which molecular networks evolve is an important question in evolutionary biology. Previous empirical work has focused on interactomes from model organisms to calculate rewiring rates, but this is limited by the relatively small number of species and sparse nature of network data across species. We present a proxy for variation in network topology: variation in drug-drug interactions (DDIs), obtained by studying drug combinations (DCs) across taxa. Here, we propose the rate at which DDIs change across species as an estimate of the rate at which the underlying molecular network changes as species diverge. We computed the evolutionary rates of DDIs using previously published data from a high-throughput study in gram-negative bacteria. Using phylogenetic comparative methods, we found that DDIs diverge rapidly over short evolutionary time periods, but that divergence saturates over longer time periods. In parallel, we mapped drugs with known targets in PPI and cofunctional networks. We found that the targets of synergistic DDIs are closer in these networks than other types of DCs and that synergistic interactions have a higher evolutionary rate, meaning that nodes that are closer evolve at a faster rate. Future studies of network evolution may use DC data to gain larger-scale perspectives on the details of network evolution within and between species.
Collapse
Affiliation(s)
- Alejandro Gil-Gomez
- Department of Ecology and Evolution, Laufer Center for Physical and Quantitative Biology, Stony Brook University, 650 Life Sciences, Stony Brook, NY 11794-4254, USA
| | - Joshua S Rest
- Department of Ecology and Evolution, Laufer Center for Physical and Quantitative Biology, Stony Brook University, 650 Life Sciences, Stony Brook, NY 11794-4254, USA
| |
Collapse
|
4
|
Reitler P, Regan J, DeJarnette C, Srivastava A, Carnahan J, Tucker KM, Meibohm B, Peters BM, Palmer GE. The atypical antipsychotic aripiprazole alters the outcome of disseminated Candida albicans infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580133. [PMID: 38405954 PMCID: PMC10888916 DOI: 10.1101/2024.02.13.580133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. For many IFIs, ≥ 30% of patients fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 approved medications that antagonize azole activity. While gain-of-function mutants resulting in antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impact C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to azole antagonists affected C. albicans phenotype and capacity to cause disease. We discovered that most of the azole antagonists had little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also worsened the outcome of disseminated infections in mice at human equivalent concentrations. This effect was abrogated in immunosuppressed mice, indicating an additional impact of aripiprazole on host immunity. Collectively, these data provide proof-of-principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.
Collapse
Affiliation(s)
- Parker Reitler
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Jen Carnahan
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Katie M. Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Qu J, Lv X. Cryptococcal meningitis in apparently immunocompetent patients. Crit Rev Microbiol 2024; 50:76-86. [PMID: 36562731 DOI: 10.1080/1040841x.2022.2159786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningitis (CM) is an invasive fungal disease that currently poses a threat to human health worldwide, with high morbidity and mortality, particularly in immunocompromised patients. Although CM mainly occurs in HIV-positive patients and other immunocompromised patients, it is also increasingly seen in seemingly immunocompetent hosts. The clinical characteristics of CM between immunocompromised and immunocompetent populations are different. However, few studies have focussed on CM in immunocompetent individuals. This review summarizes the clinical characteristics of apparently immunocompetent CM patients in terms of aetiology, immune pathogenesis, clinical presentation, laboratory data, imaging findings, treatment strategies and prognosis. It is of great significance to further understand the disease characteristics of CM, explore new treatment strategies and improve the prognosis of CM in immunocompetent individuals.
Collapse
Affiliation(s)
- Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Caza M, Santos DA, Burden E, Brisland A, Hu G, Kronstad JW. Proteasome inhibition as a therapeutic target for the fungal pathogen Cryptococcus neoformans. Microbiol Spectr 2023; 11:e0190423. [PMID: 37750732 PMCID: PMC10580939 DOI: 10.1128/spectrum.01904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The current therapeutic challenges for treating fungal diseases demand new approaches and new drugs. A promising strategy involves combination therapy with agents of distinct mechanisms of action to increase fungicidal activity and limit the impact of mutations leading to resistance. In this study, we evaluated the antifungal potential of bortezomib by examining the inhibition of proteasome activity, cell proliferation, and capsule production by Cryptococcus neoformans, the causative agent of fungal meningoencephalitis. Chemical genetic screens with collections of deletion mutants identified potential druggable targets for combination therapy with bortezomib. In vitro assays of combinations of bortezomib with flucytosine, chlorpromazine, bafilomycin A1, copper sulfate, or hydroxyurea revealed antifungal effects against C. neoformans. Furthermore, combination treatment with bortezomib and flucytosine in a murine inhalation model of cryptococcosis resulted in the improvement of neurological functions and reduced fungal replication and dissemination, leading to a delay in disease progression. This study therefore highlights the utility of chemical genetic screens to identify new therapeutic approaches as well as the antifungal potential of proteasome inhibition. IMPORTANCE Fungal diseases of humans are difficult to treat, and there is a clear need for additional antifungal drugs, better diagnostics, effective vaccines, and new approaches to deal with emerging drug resistance. Fungi are challenging to control because they share many common biochemical functions with their mammalian hosts and it is therefore difficult to identify fungal-specific targets for drug development. One approach is to employ existing antifungal drugs in combination with agents that target common cellular processes at levels that are (ideally) not toxic for the host. We pursued this approach in this study by examining the potential of the clinically approved proteasome inhibitor bortezomib to influence the proliferation and virulence of Cryptococcus neoformans. We found that the combination of bortezomib with the anti-cryptococcal drug flucytosine improved the survival of infected mice, thus demonstrating the potential of this strategy for antifungal therapy.
Collapse
Affiliation(s)
- Mélissa Caza
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Assis Santos
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizabeth Burden
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Brisland
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Shapiro RS, Gerstein AC. Powering up antifungal treatment: using small molecules to unlock the potential of existing therapies. mBio 2023; 14:e0107323. [PMID: 37530533 PMCID: PMC10470729 DOI: 10.1128/mbio.01073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 08/03/2023] Open
Abstract
Fungal pathogens are increasingly appreciated as a significant infectious disease challenge. Compared to bacteria, fungal cells are more closely related to human cells, and few classes of antifungal drugs are available. Combination therapy offers a potential solution to reduce the likelihood of resistance acquisition and extend the lifespan of existing antifungals. There has been recent interest in combining first-line drugs with small-molecule adjuvants. In a recent article, Alabi et al. identified 1,4-benzodiazepines as promising molecules to enhance azole activity in pathogenic Candida spp. (P. E. Alabi, C. Gautier, T. P. Murphy, X. Gu, M. Lepas, V. Aimanianda, J. K. Sello, I. V. Ene, 2023, mBio https://doi.org/10.1128/mbio.00479-23). These molecules have no antifungal activity on their own but exhibited significant potentiation of fluconazole in azole-susceptible and -resistant isolates. Additionally, the 1,4-benzodiazepines increased the fungicidal activity of azoles that are typically fungistatic to Candida spp., inhibited filamentation (a virulence-associated trait), and accordingly increased host survival in Galleria mellonella. This research thus provides another encouraging step on the critical pathway toward reducing mortality due to antimicrobial resistance.
Collapse
Affiliation(s)
- Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aleeza C. Gerstein
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Dos Reis TF, de Castro PA, Bastos RW, Pinzan CF, Souza PFN, Ackloo S, Hossain MA, Drewry DH, Alkhazraji S, Ibrahim AS, Jo H, Lightfoot JD, Adams EM, Fuller KK, deGrado WF, Goldman GH. A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi. Nat Commun 2023; 14:2052. [PMID: 37045836 PMCID: PMC10090755 DOI: 10.1038/s41467-023-37573-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.
Collapse
Affiliation(s)
- Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Pedro F N Souza
- Visiting professor at Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, ON, M5G 1L7, Canada
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David Harold Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jorge D Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Emily M Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kevin K Fuller
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William F deGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
9
|
Hoy MJ, Heitman J. Drug Target Elucidation Through Isolation and Analysis of Drug-Resistant Mutants in Cryptococcus neoformans. Methods Mol Biol 2023; 2658:127-143. [PMID: 37024699 PMCID: PMC10602406 DOI: 10.1007/978-1-0716-3155-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Drug target identification is an essential component to antifungal drug development. Many methods, including large chemical library screening, natural product screening, and drug repurposing efforts, can identify compounds with favorable in vitro antifungal activity. However, these approaches will often identify compounds with no known mechanism of action. Herein, we describe a method utilizing the human fungal pathogen Cryptococcus neoformans to identify antifungal drug targets through the isolation of spontaneous resistant mutants, antifungal testing, whole-genome sequencing, and variant analysis.
Collapse
Affiliation(s)
- Michael J Hoy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
11
|
Cui X, Wang L, Lü Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 2022; 15:986-1000. [PMID: 35981408 DOI: 10.1016/j.jiph.2022.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
With the widespread use of immunosuppressive agents and the increase in patients with severe infections, the incidence of fungal infections worldwide has increased year by year. The fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus cause a total of more than 1 million deaths each year. Long-term use of antifungal drugs can easily lead to fungal resistance, and the prevalence of drug-resistant fungi is a major global health challenge. In order to effectively control global fungal infections, there is an urgent need for new drugs that can exert effective antifungal activity and overcome drug resistance. We must promote the discovery of new antifungal targets and drugs, and find effective ways to control drug-resistant fungi through different ways, so as to reduce the threat of drug-resistant fungi to human life, health and safety. In the past few years, certain progress has been made in the research and development of antifungal drugs. In addition to summarizing some of the antifungal drugs currently approved by the FDA, this review also focuses on potential antifungal drugs, the repositioned drugs, and drugs that can treat drug-resistant bacteria and fungal infections, and provide new ideas for the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Xiangyi Cui
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Lanlin Wang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Yuhong Lü
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
12
|
Revie NM, Iyer KR, Maxson ME, Zhang J, Yan S, Fernandes CM, Meyer KJ, Chen X, Skulska I, Fogal M, Sanchez H, Hossain S, Li S, Yashiroda Y, Hirano H, Yoshida M, Osada H, Boone C, Shapiro RS, Andes DR, Wright GD, Nodwell JR, Del Poeta M, Burke MD, Whitesell L, Robbins N, Cowen LE. Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nat Commun 2022; 13:3634. [PMID: 35752611 PMCID: PMC9233667 DOI: 10.1038/s41467-022-31308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.
Collapse
Affiliation(s)
- Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiabao Zhang
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Su Yan
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caroline M Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Kirsten J Meyer
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena Li
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Veteran Administration Medical Center, Northport, NY, USA
| | - Martin D Burke
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
14
|
Vallières C, Alexander C, Avery SV. Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations. Appl Microbiol Biotechnol 2021; 105:2867-2875. [PMID: 33738552 PMCID: PMC8007513 DOI: 10.1007/s00253-021-11211-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/06/2021] [Accepted: 02/28/2021] [Indexed: 12/04/2022]
Abstract
Abstract Fungi cause diverse, serious socio-economic problems, including biodeterioration of valuable products and materials that spawns a biocides industry worth ~$11 billion globally. To help combat environmental fungi that commonly colonise material products, this study tested the hypothesis that combination of an approved fungicide with diverse agents approved by the FDA (Food and Drug Administration) could reveal potent combinatorial activities with promise for fungicidal applications. The strategy to use approved compounds lowers potential development risks for any effective combinations. A high-throughput assay of 1280 FDA-approved compounds was conducted to find those that potentiate the effect of iodopropynyl-butyl-carbamate (IPBC) on the growth of Trichoderma virens; IPBC is one of the two most widely used Biocidal Products Regulations–approved fungicides. From this library, 34 compounds in combination with IPBC strongly inhibited fungal growth. Low-cost compounds that gave the most effective growth inhibition were tested against other environmental fungi that are standard biomarkers for resistance of synthetic materials to fungal colonisation. Trifluoperazine (TFZ) in combination with IPBC enhanced growth inhibition of three of the five test fungi. The antifungal hexetidine (HEX) potentiated IPBC action against two of the test organisms. Testable hypotheses on the mechanisms of these combinatorial actions are discussed. Neither IPBC + TFZ nor IPBC + HEX exhibited a combinatorial effect against mammalian cells. These combinations retained strong fungal growth inhibition properties after incorporation to a polymer matrix (alginate) with potential for fungicide delivery. The study reveals the potential of such approved compounds for novel combinatorial applications in the control of fungal environmental opportunists. Key points • Search with an approved fungicide to find new fungicidal synergies in drug libraries. • New combinations inhibit growth of key environmental fungi on different matrices. • The approach enables a more rapid response to demand for new biocides. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11211-3.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
15
|
Yang W, Tu J, Ji C, Li Z, Han G, Liu N, Li J, Sheng C. Discovery of Piperidol Derivatives for Combinational Treatment of Azole-Resistant Candidiasis. ACS Infect Dis 2021; 7:650-660. [PMID: 33593060 DOI: 10.1021/acsinfecdis.0c00849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effective strategies are needed to deal with invasive fungal infections caused by drug-resistant fungi. Previously, we designed a series of antifungal benzocyclane derivatives based on the drug repurposing of haloperidol. Herein, further structural optimization and antifungal mechanism studies were performed, leading to the discovery of new piperidol derivative B2 with improved synergistic antifungal potency, selectivity, and water solubility. In particular, the combination of compound B2 and fluconazole showed potent in vitro and in vivo antifungal activity against azole-resistant Candida albicans. Compound B2 inhibited important virulence factors by regulating virulence-associated genes and improved the efficacy of fluconazole by down-regulating the CYP51-coding gene and efflux pump gene. Taken together, the piperidol derivative B2 represents a promising lead compound for the combinational treatment of azole-resistant candidiasis.
Collapse
Affiliation(s)
- Wanzhen Yang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Changjin Ji
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhuang Li
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jian Li
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chunquan Sheng
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
16
|
Rocha-Hasler M, de Oliveira GM, da Gama AN, Fiuza LFDA, Fesser AF, Cal M, Rocchetti R, Peres RB, Guan XL, Kaiser M, Soeiro MDNC, Mäser P. Combination With Tomatidine Improves the Potency of Posaconazole Against Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:617917. [PMID: 33747979 PMCID: PMC7970121 DOI: 10.3389/fcimb.2021.617917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi. However, when tested in chronic Chagas disease patients, a high rate of relapse after Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable combination partners of azoles, we have selected a set of inhibitors of sterol and sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15 tested compounds presented higher or equal activity as benznidazole (Bz), with EC50 values ≤2.2 μM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The combination of TH with Posa displayed a synergistic profile against amastigotes, with a mean ΣFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/kg. As observed in vitro, the best combo proportion in vivo was the ratio 3 TH:1 Posa. The combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These initial results indicate a potential for the combination of posaconazole with tomatidine against T. cruzi.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil.,Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gabriel Melo de Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Aline Nefertiti da Gama
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | | | - Anna Frieda Fesser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Monica Cal
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Romina Rocchetti
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Xue Li Guan
- Systems Biology of Lipid Metabolism in Human Health and Diseases Laboratory, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol 2021; 19:454-466. [PMID: 33558691 PMCID: PMC7868659 DOI: 10.1038/s41579-021-00511-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Cryptococcus spp., in particular Cryptococcus neoformans and Cryptococcus gattii, have an enormous impact on human health worldwide. The global burden of cryptococcal meningitis is almost a quarter of a million cases and 181,000 deaths annually, with mortality rates of 100% if infections remain untreated. Despite these alarming statistics, treatment options for cryptococcosis remain limited, with only three major classes of drugs approved for clinical use. Exacerbating the public health burden is the fact that the only new class of antifungal drugs developed in decades, the echinocandins, displays negligible antifungal activity against Cryptococcus spp., and the efficacy of the remaining therapeutics is hampered by host toxicity and pathogen resistance. Here, we describe the current arsenal of antifungal agents and the treatment strategies employed to manage cryptococcal disease. We further elaborate on the recent advances in our understanding of the intrinsic and adaptive resistance mechanisms that are utilized by Cryptococcus spp. to evade therapeutic treatments. Finally, we review potential therapeutic strategies, including combination therapy, the targeting of virulence traits, impairing stress response pathways and modulating host immunity, to effectively treat infections caused by Cryptococcus spp. Overall, understanding of the mechanisms that regulate anti-cryptococcal drug resistance, coupled with advances in genomics technologies and high-throughput screening methodologies, will catalyse innovation and accelerate antifungal drug discovery.
Collapse
|
18
|
Ham RE, Temesvari LA. Joining forces: Leveraging novel combination therapies to combat infections with eukaryotic pathogens. PLoS Pathog 2021; 16:e1009081. [PMID: 33382854 PMCID: PMC7774843 DOI: 10.1371/journal.ppat.1009081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Rachel E. Ham
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, Unites States of America
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, Unites States of America
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, Unites States of America
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, Unites States of America
- * E-mail:
| |
Collapse
|
19
|
Vallières C, Singh N, Alexander C, Avery SV. Repurposing Nonantifungal Approved Drugs for Synergistic Targeting of Fungal Pathogens. ACS Infect Dis 2020; 6:2950-2958. [PMID: 33141557 DOI: 10.1021/acsinfecdis.0c00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the spread of drug resistance, new antimicrobials are urgently needed. Here, we set out to tackle this problem by high-throughput exploration for novel antifungal synergies among combinations of approved, nonantifungal drugs; a novel strategy exploiting the potential of alternative targets, low chemicals usage and low development risk. We screened the fungal pathogen Candida albicans by combining a small panel of nonantifungal drugs (all in current use for other clinical applications) with 1280 compounds from an approved drug library. Screens at sublethal concentrations of the antibiotic paromomycin (PM), the antimalarial primaquine (PQ), or the anti-inflammatory drug ibuprofen (IF) revealed a total of 17 potential strong, synergistic interactions with the library compounds. Susceptibility testing with the most promising combinations corroborated marked synergies [fractional inhibitory concentration (FIC) indices ≤0.5] between PM + β-escin, PQ + celecoxib, and IF + pentamidine, reducing the MICs of PM, PQ, and IF in C. albicans by >64-, 16-, and 8-fold, respectively. Paromomycin + β-escin and PQ + celecoxib were effective also against C. albicans biofilms, azole-resistant clinical isolates, and other fungal pathogens. Actions were specific, as no synergistic effect was observed in mammalian cells. Mode of action was investigated for one of the combinations, revealing that PM + β-escin synergistically increase the error-rate of mRNA translation and suggesting a different molecular target to current antifungals. The study unveils the potential of the described combinatorial strategy in enabling acceleration of drug-repurposing discovery for combatting fungal pathogens.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nishant Singh
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
20
|
Beattie SR, Krysan DJ. Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds. Curr Opin Microbiol 2020; 57:1-6. [PMID: 32339892 PMCID: PMC7652037 DOI: 10.1016/j.mib.2020.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Invasive fungal infections are responsible for a significant disease burden worldwide. Drugs to treat these infections are limited to only four unique classes, and despite these available treatments, mortality rates remain unacceptably high. In this review, we will discuss antifungal drug screening and how the approach to identifying novel compounds needs move away from traditional growth-based assays in order to meet the demand for new drugs. We highlight specific examples of creative screening strategies that increase the likelihood of identifying compounds with desired activities and provide perspective to inspire development of novel screens for the identification of first-in-class antifungals.
Collapse
Affiliation(s)
- Sarah R Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
21
|
|
22
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
NADPH-Cytochrome P450 Reductase Ccr1 Is a Target of Tamoxifen and Participates in Its Antifungal Activity via Regulating Cell Wall Integrity in Fission Yeast. Antimicrob Agents Chemother 2020; 64:AAC.00079-20. [PMID: 32571823 DOI: 10.1128/aac.00079-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Invasive fungal diseases are a leading cause of mortality among immunocompromised populations. Treatment is notoriously difficult due to the limited number of antifungal drugs as well as the emergence of drug resistance. Tamoxifen (TAM), a selective estrogen receptor modulator frequently used for the treatment of breast cancer, has been found to have antifungal activities and may be a useful addition to the agents used to treat fungal infectious diseases. However, the molecular mechanisms underlying its antifungal actions remain obscure. Here, we screened for mutations that confer sensitivity to azole antifungal drugs by using the fission yeast Schizosaccharomyces pombe as a model and isolated a mutant with a mutation in cls1 (ccr1), an allele of the gene encoding the NADPH-cytochrome P450 reductase Ccr1. We found that strains with a deletion of the ccr1 + gene exhibited hypersensitivities to various drugs, including antifungal drugs (azoles, terbinafine, micafungin), the immunosuppressor FK506, and the anticancer drugs TAM and 5-fluorouracil (5-FU). Unexpectedly, the overexpression of Ccr1 caused yeast cell resistance to TAM but not the other drugs tested here. Additionally, strains with a deletion of Ccr1 displayed pleiotropic phenotypes, including defects in cell wall integrity and vacuole fusion, enhanced calcineurin activity, as well as increased intracellular Ca2+ levels. Overexpression of the constitutively active calcineurin suppressed the drug-sensitive phenotypes of the Δccr1 cells. Notably, TAM treatment of wild-type cells resulted in pleiotropic phenotypes, similar to those of cells lacking Ccr1. Furthermore, TAM inhibited Ccr1 NADPH-cytochrome P450 reductase activities in a dose-dependent manner. Moreover, TAM treatment also inhibited the NADPH-cytochrome P450 reductase activities of Candida albicans and resulted in defective cell wall integrity. Collectively, our findings suggest that Ccr1 is a novel target of TAM and is involved in the antifungal activity of TAM by regulating cell wall integrity in fission yeast.
Collapse
|
24
|
Screening Repurposing Libraries for Identification of Drugs with Novel Antifungal Activity. Antimicrob Agents Chemother 2020; 64:AAC.00924-20. [PMID: 32660991 DOI: 10.1128/aac.00924-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fungal organisms are ubiquitous in nature, and progress of modern medicine is creating an expanding number of severely compromised patients susceptible to a variety of opportunistic fungal infections. These infections are difficult to diagnose and treat, leading to high mortality rates. The limited antifungal arsenal, the toxicity of current antifungal drugs, the development of resistance, and the emergence of new multidrug-resistant fungi, all highlight the urgent need for new antifungal agents. Unfortunately, the development of a novel antifungal is a rather long and expensive proposition, and no new classes of antifungal agents have reached the market in the last 2 decades. Drug repurposing, or finding new indications for old drugs, represents a promising alternative pathway to drug development that is particularly appealing within the academic environment. In the last few years, there has been a growing interest in repurposing approaches in the antifungal arena, with multiple groups of investigators having performed screenings of different repurposing libraries against different pathogenic fungi in search for drugs with previously unrecognized antifungal effects. Overall, these repurposing efforts may lead to the fast deployment of drugs with novel antifungal activity, which can rapidly bring benefits to patients, while at the same time reducing health care costs.
Collapse
|
25
|
Nagy TA, Crooks AL, Quintana JLJ, Detweiler CS. Clofazimine Reduces the Survival of Salmonella enterica in Macrophages and Mice. ACS Infect Dis 2020; 6:1238-1249. [PMID: 32272013 DOI: 10.1021/acsinfecdis.0c00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistant pathogens are on the rise, and new treatments are needed for bacterial infections. Efforts toward antimicrobial discovery typically identify compounds that prevent bacterial growth in microbiological media. However, the microenvironments to which pathogens are exposed during infection differ from rich media and alter the biology of the pathogen. We and others have therefore developed screening platforms that identify compounds that disrupt pathogen growth within cultured mammalian cells. Our platform focuses on Gram-negative bacterial pathogens, which are of particular clinical concern. We screened a panel of 707 drugs to identify those with efficacy against Salmonella enterica Typhimurium growth within macrophages. One of the drugs identified, clofazimine (CFZ), is an antibiotic used to treat mycobacterial infections that is not recognized for potency against Gram-negative bacteria. We demonstrated that in macrophages CFZ enabled the killing of S. Typhimurium at single digit micromolar concentrations, and in mice, CFZ reduced tissue colonization. We confirmed that CFZ does not inhibit the growth of S. Typhimurium and E. coli in standard microbiological media. However, CFZ prevents bacterial replication under conditions consistent with the microenvironment of macrophage phagosomes, in which S. Typhimurium resides during infection: low pH, low magnesium and phosphate, and the presence of certain cationic antimicrobial peptides. These observations suggest that in macrophages and mice the efficacy of CFZ against S. Typhimurium is facilitated by multiple aspects of soluble innate immunity. Thus, systematic screens of existing drugs for infection-based potency are likely to identify unexpected opportunities for repurposing drugs to treat difficult pathogens.
Collapse
Affiliation(s)
- Toni A. Nagy
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Amy L. Crooks
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Corrella S. Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
Wambaugh MA, Denham ST, Ayala M, Brammer B, Stonhill MA, Brown JC. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. eLife 2020; 9:54160. [PMID: 32367801 PMCID: PMC7200157 DOI: 10.7554/elife.54160] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections cause 1.6 million deaths annually, primarily in immunocompromised individuals. Mortality rates are as high as 90% due to limited treatments. The azole class antifungal, fluconazole, is widely available and has multi-species activity but only inhibits growth instead of killing fungal cells, necessitating long treatments. To improve treatment, we used our novel high-throughput method, the overlap2 method (O2M) to identify drugs that interact with fluconazole, either increasing or decreasing efficacy. We identified 40 molecules that act synergistically (amplify activity) and 19 molecules that act antagonistically (decrease efficacy) when combined with fluconazole. We found that critical frontline beta-lactam antibiotics antagonize fluconazole activity. A promising fluconazole-synergizing anticholinergic drug, dicyclomine, increases fungal cell permeability and inhibits nutrient intake when combined with fluconazole. In vivo, this combination doubled the time-to-endpoint of mice with Cryptococcus neoformans meningitis. Thus, our ability to rapidly identify synergistic and antagonistic drug interactions can potentially alter the patient outcomes. Individuals with weakened immune systems – such as recipients of organ transplants – can fall prey to illnesses caused by fungi that are harmless to most people. These infections are difficult to manage because few treatments exist to fight fungi, and many have severe side effects. Antifungal drugs usually slow the growth of fungi cells rather than kill them, which means that patients must remain under treatment for a long time, or even for life. One way to boost efficiency and combat resistant infections is to combine antifungal treatments with drugs that work in complementary ways: the drugs strengthen each other’s actions, and together they can potentially kill the fungus rather than slow its progression. However, not all drug combinations are helpful. In fact, certain drugs may interact in ways that make treatment less effective. This is particularly concerning because people with weakened immune systems often take many types of medications. Here, Wambaugh et al. harnessed a new high-throughput system to screen how 2,000 drugs (many of which already approved to treat other conditions) affected the efficiency of a common antifungal called fluconazole. This highlighted 19 drugs that made fluconazole less effective, some being antibiotics routinely used to treat patients with weakened immune systems. On the other hand, 40 drugs boosted the efficiency of fluconazole, including dicyclomine, a compound currently used to treat inflammatory bowel syndrome. In fact, pairing dicyclomine and fluconazole more than doubled the survival rate of mice with severe fungal infections. The combined treatment could target many species of harmful fungi, even those that had become resistant to fluconazole alone. The results by Wambaugh et al. point towards better treatments for individuals with serious fungal infections. Drugs already in circulation for other conditions could be used to boost the efficiency of fluconazole, while antibiotics that do not decrease the efficiency of this medication should be selected to treat at-risk patients.
Collapse
Affiliation(s)
- Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Magali Ayala
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Brianna Brammer
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Miekan A Stonhill
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Jessica Cs Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
27
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, Dos Santos ALS. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Curr Top Med Chem 2020; 19:2527-2553. [PMID: 31654512 DOI: 10.2174/1568026619666191025152412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Fungal infections are a veritable public health problem worldwide. The increasing number of patient populations at risk (e.g. transplanted individuals, cancer patients, and HIV-infected people), as well as the use of antifungal agents for prophylaxis in medicine, have favored the emergence of previously rare or newly identified fungal species. Indeed, novel antifungal resistance patterns have been observed, including environmental sources and the emergence of simultaneous resistance to different antifungal classes, especially in Candida spp., which are known for the multidrug-resistance (MDR) profile. In order to circumvent this alarming scenario, the international researchers' community is engaged in discovering new, potent, and promising compounds to be used in a near future to treat resistant fungal infections in hospital settings on a global scale. In this context, many compounds with antifungal action from both natural and synthetic sources are currently under clinical development, including those that target either ergosterol or β(1,3)-D-glucan, presenting clear evidence of pharmacologic/pharmacokinetic advantages over currently available drugs against these two well-known fungal target structures. Among these are the tetrazoles VT-1129, VT-1161, and VT-1598, the echinocandin CD101, and the glucan synthase inhibitor SCY-078. In this review, we compiled the most recent antifungal compounds that are currently in clinical trials of development and described the potential outcomes against emerging and rare Candida species, with a focus on C. auris, C. dubliniensis, C. glabrata, C. guilliermondii, C. haemulonii, and C. rugosa. In addition to possibly overcoming the limitations of currently available antifungals, new investigational chemical agents that can enhance the classic antifungal activity, thereby reversing previously resistant phenotypes, were also highlighted. While novel and increasingly MDR non-albicans Candida species continue to emerge worldwide, novel strategies for rapid identification and treatment are needed to combat these life-threatening opportunistic fungal infections.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Caplan T, Lorente-Macías Á, Stogios PJ, Evdokimova E, Hyde S, Wellington MA, Liston S, Iyer KR, Puumala E, Shekhar-Guturja T, Robbins N, Savchenko A, Krysan DJ, Whitesell L, Zuercher WJ, Cowen LE. Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chem Biol 2020; 27:269-282.e5. [PMID: 31924499 DOI: 10.1016/j.chembiol.2019.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.
Collapse
Affiliation(s)
- Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Álvaro Lorente-Macías
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Peter J Stogios
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Elena Evdokimova
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Melanie A Wellington
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sean Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - William J Zuercher
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
29
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
30
|
A Systematic Screen Reveals a Diverse Collection of Medications That Induce Antifungal Resistance in Candida Species. Antimicrob Agents Chemother 2019; 63:AAC.00054-19. [PMID: 30858206 DOI: 10.1128/aac.00054-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.
Collapse
|
31
|
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research? Drug Resist Updat 2019; 42:22-34. [PMID: 30822675 DOI: 10.1016/j.drup.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.
Collapse
|
32
|
Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 2019; 17:141-155. [PMID: 30683887 DOI: 10.1038/s41579-018-0141-x] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
Antimicrobial resistance threatens a resurgence of life-threatening bacterial infections and the potential demise of many aspects of modern medicine. Despite intensive drug discovery efforts, no new classes of antibiotics have been developed into new medicines for decades, in large part owing to the stringent chemical, biological and pharmacological requisites for effective antibiotic drugs. Combinations of antibiotics and of antibiotics with non-antibiotic activity-enhancing compounds offer a productive strategy to address the widespread emergence of antibiotic-resistant strains. In this Review, we outline a theoretical and practical framework for the development of effective antibiotic combinations.
Collapse
|
33
|
Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, de Meirelles JV, Xisto MIDS, Ranque S, Havlicek V, Vandeputte P, Govic YL, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhardt A, Tintelnot K, Capilla J, Martin-Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 2018. [PMID: 29538735 DOI: 10.1093/mmy/myx113] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.
Collapse
Affiliation(s)
- Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | - Stephane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM / CHU Timone, Marseille, France
| | - Vladimir Havlicek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Patrick Vandeputte
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Jean-Philippe Bouchara
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Austria
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology. Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | | | - Javier Peman
- Microbiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carsten Schwarz
- Cystic Fibrosis Centre Berlin/Charité-Universitätsmedizin Berlin, Germany
| | - Anne Bernhardt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Kathrin Tintelnot
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Javier Capilla
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Adela Martin-Vicente
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jose Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Markus Nagl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
34
|
Nicola AM, Albuquerque P, Paes HC, Fernandes L, Costa FF, Kioshima ES, Abadio AKR, Bocca AL, Felipe MS. Antifungal drugs: New insights in research & development. Pharmacol Ther 2018; 195:21-38. [PMID: 30347212 DOI: 10.1016/j.pharmthera.2018.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for better antifungal therapy is commonly accepted in view of the high mortality rates associated with systemic infections, the low number of available antifungal classes, their associated toxicity and the increasing number of infections caused by strains with natural or acquired resistance. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets when compared to the conventional ones currently used. Although new potential targets are reported, translating the discoveries from bench to bedside is a long process and most of these drugs fail to reach the patients. In this review, we discuss the development of antifungal drugs focusing on the approach of drug repurposing and the search for novel drugs for classical targets, the most recently described gene targets for drug development, the possibilities of immunotherapy using antibodies, cytokines, therapeutic vaccines and antimicrobial peptides.
Collapse
Affiliation(s)
| | - Patrícia Albuquerque
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Hugo Costa Paes
- Division of Clinical Medicine, University of Brasília Medical School, Brazil
| | - Larissa Fernandes
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Fabricio F Costa
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; MATTER, Chicago, IL, USA; Cancer Biology and Epigenomics Program, Ann & Robert Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Ana Karina Rodrigues Abadio
- School for Applied Social and Agricultural Sciences, State University of Mato Grosso, Nova Mutum Campus, Mato Grosso, Brazil
| | | | - Maria Sueli Felipe
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brazil.
| |
Collapse
|
35
|
Vallières C, Raulo R, Dickinson M, Avery SV. Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens. Front Microbiol 2018; 9:2355. [PMID: 30349511 PMCID: PMC6186996 DOI: 10.3389/fmicb.2018.02355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
A range of fungicides or antifungals are currently deployed to control fungi in agriculture or medicine, but resistance to current agents is growing so new approaches and molecular targets are urgently needed. Recently, different aminoglycoside antibiotics combined with particular transport inhibitors were found to produce strong, synergistic growth-inhibition of fungi, by synergistically increasing the error rate of mRNA translation. Here, focusing on translation fidelity as a novel target for combinatorial antifungal treatment, we tested the hypothesis that alternative combinations of agents known to affect the availability of functional amino acids would synergistically inhibit growth of major fungal pathogens. We screened 172 novel combinations against three phytopathogens (Rhizoctonia solani, Zymoseptoria tritici, and Botrytis cinerea) and three human pathogens (Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus), showing that 48 combinations inhibited strongly the growth of the pathogens; the growth inhibition effect was significantly greater with the agents combined than by a simple product of their individual effects at the same doses. Of these, 23 combinations were effective against more than one pathogen, including combinations comprising food-and-drug approved compounds, e.g., quinine with bicarbonate, and quinine with hygromycin. These combinations [fractional inhibitory combination (FIC) index ≤0.5] gave up to 100% reduction of fungal growth yield at concentrations of agents which, individually, had negligible effect. No synergy was evident against bacterial, plant or mammalian cells, indicating specificity for fungi. Mode-of-action analyses for quinine + hygromycin indicated that synergistic mistranslation was the antifungal mechanism. That mechanism was not universal as bicarbonate exacerbated quinine action by increasing drug uptake. The study unveils chemical combinations and a target process with potential for control of diverse fungal pathogens, and suggests repurposing possibilities for several current therapeutics.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
36
|
Brochado AR, Telzerow A, Bobonis J, Banzhaf M, Mateus A, Selkrig J, Huth E, Bassler S, Zamarreño Beas J, Zietek M, Ng N, Foerster S, Ezraty B, Py B, Barras F, Savitski MM, Bork P, Göttig S, Typas A. Species-specific activity of antibacterial drug combinations. Nature 2018; 559:259-263. [PMID: 29973719 DOI: 10.1038/s41586-018-0278-9] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine1,2. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug-drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella, with one reverting resistance to the last-resort antibiotic colistin.
Collapse
Affiliation(s)
- Ana Rita Brochado
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anja Telzerow
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jacob Bobonis
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manuel Banzhaf
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Emily Huth
- Institute of Medical Microbiology and Infection Control, Hospital of Goethe University, Frankfurt am Main, Germany
| | - Stefan Bassler
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jordi Zamarreño Beas
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS UMR 7283, Aix-Marseille Université, Marseille, France
| | - Matylda Zietek
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Natalie Ng
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sunniva Foerster
- Institute of Social & Preventive Medicine, Institute of Infectious Diseases, University of Bern, Bern, Switzerland
| | - Benjamin Ezraty
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS UMR 7283, Aix-Marseille Université, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS UMR 7283, Aix-Marseille Université, Marseille, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS UMR 7283, Aix-Marseille Université, Marseille, France.,Institut Pasteur, Paris, France
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural & Computational Biology Unit, Heidelberg, Germany.,Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Hospital of Goethe University, Frankfurt am Main, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany. .,European Molecular Biology Laboratory, Structural & Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
37
|
Commonly Used Oncology Drugs Decrease Antifungal Effectiveness against Candida and Aspergillus Species. Antimicrob Agents Chemother 2018; 62:AAC.00504-18. [PMID: 29712657 DOI: 10.1128/aac.00504-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
The incidence of invasive fungal infections has risen significantly in recent decades as medical interventions have become increasingly aggressive. These infections are extremely difficult to treat due to the extremely limited repertoire of systemic antifungals, the development of drug resistance, and the extent to which the patient's immune function is compromised. Even when the appropriate antifungal therapies are administered in a timely fashion, treatment failure is common, even in the absence of in vitro microbial resistance. In this study, we screened a small collection of FDA-approved oncolytic agents for compounds that impact the efficacy of the two most widely used classes of systemic antifungals against Candida albicans, Candida glabrata, and Aspergillus fumigatus We have identified several drugs that enhance fungal growth in the presence of azole antifungals and examine the potential that these drugs directly affect fungal fitness, specifically antifungal susceptibility, and may be contributing to clinical treatment failure.
Collapse
|
38
|
Wambaugh MA, Brown JCS. High-throughput Identification of Synergistic Drug Combinations by the Overlap2 Method. J Vis Exp 2018. [PMID: 29863672 DOI: 10.3791/57241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although antimicrobial drugs have dramatically increased the lifespan and quality of life in the 20th century, antimicrobial resistance threatens our entire society's ability to treat systemic infections. In the United States alone, antibiotic-resistant infections kill approximately 23,000 people a year and cost around 20 billion USD in additional healthcare. One approach to combat antimicrobial resistance is combination therapy, which is particularly useful in the critical early stage of infection, before the infecting organism and its drug resistance profile have been identified. Many antimicrobial treatments use combination therapies. However, most of these combinations are additive, meaning that the combined efficacy is the same as the sum of the individual antibiotic efficacy. Some combination therapies are synergistic: the combined efficacy is much greater than additive. Synergistic combinations are particularly useful because they can inhibit the growth of antimicrobial drug resistant strains. However, these combinations are rare and difficult to identify. This is due to the sheer number of molecules needed to be tested in a pairwise manner: a library of 1,000 molecules has 1 million potential combinations. Thus, efforts have been made to predict molecules for synergy. This article describes our high-throughput method for predicting synergistic small molecule pairs known as the Overlap2 Method (O2M). O2M uses patterns from chemical-genetic datasets to identify mutants that are hypersensitive to each molecule in a synergistic pair but not to other molecules. The Brown lab exploits this growth difference by performing a high-throughput screen for molecules that inhibit the growth of mutant but not wild-type cells. The lab's work previously identified molecules that synergize with the antibiotic trimethoprim and the antifungal drug fluconazole using this strategy. Here, the authors present a method to screen for novel synergistic combinations, which can be altered for multiple microorganisms.
Collapse
Affiliation(s)
- Morgan A Wambaugh
- Microbiology and Immunology Division, Department of Pathology, University of Utah
| | - Jessica C S Brown
- Microbiology and Immunology Division, Department of Pathology, University of Utah;
| |
Collapse
|
39
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
40
|
Abstract
The fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have transitioned from a rare curiosity to a leading cause of human mortality. The management of infections caused by these organisms is intimately dependent on the efficacy of antifungal agents; however, fungi that are resistant to these treatments are regularly isolated in the clinic, impeding our ability to control infections. Given the significant impact fungal pathogens have on human health, it is imperative to understand the molecular mechanisms that govern antifungal drug resistance. This review describes our current knowledge of the mechanisms by which antifungal drug resistance evolves in experimental populations and clinical settings. We explore current antifungal treatment options and discuss promising strategies to impede the evolution of drug resistance. By tackling antifungal drug resistance as an evolutionary problem, there is potential to improve the utility of current treatments and accelerate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| |
Collapse
|
41
|
Mount HO, Revie NM, Todd RT, Anstett K, Collins C, Costanzo M, Boone C, Robbins N, Selmecki A, Cowen LE. Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 2018; 14:e1007319. [PMID: 29702647 PMCID: PMC5922528 DOI: 10.1371/journal.pgen.1007319] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal infections caused by the pathogen Candida albicans have transitioned from a rare curiosity to a major cause of human mortality. This is in part due to the emergence of resistance to the limited number of antifungals available to treat fungal infections. Azoles function by targeting the biosynthesis of ergosterol, a key component of the fungal cell membrane. Loss-of-function mutations in the ergosterol biosynthetic gene ERG3 mitigate azole toxicity and enable resistance that depends upon fungal stress responses. Here, we performed a genome-wide synthetic genetic array screen in Saccharomyces cerevisiae to map ERG3 genetic interactors and uncover novel circuitry important for azole resistance. We identified nine genes that enabled erg3-mediated azole resistance in the model yeast and found that only two of these genes had a conserved impact on resistance in C. albicans. Further, we screened a C. albicans homozygous deletion mutant library and identified 13 genes for which deletion enhances azole susceptibility. Two of the genes, RGD1 and PEP8, were also important for azole resistance acquired by diverse mechanisms. We discovered that loss of function of retrograde transport protein Pep8 overwhelms the functional capacity of the stress response regulator calcineurin, thereby abrogating azole resistance. To identify the mechanism through which the GTPase activator protein Rgd1 enables azole resistance, we selected for mutations that restore resistance in strains lacking Rgd1. Whole genome sequencing uncovered parallel adaptive mechanisms involving amplification of both chromosome 7 and a large segment of chromosome 3. Overexpression of a transporter gene on the right portion of chromosome 3, NPR2, was sufficient to enable azole resistance in the absence of Rgd1. Thus, we establish a novel mechanism of adaptation to drug-induced stress, define genetic circuitry underpinning azole resistance, and illustrate divergence in resistance circuitry over evolutionary time. Fungal infections caused by the pathogen Candida albicans pose a serious threat to human health. Treating these infections relies heavily on the azole antifungals, however, resistance to these drugs develops readily demanding novel therapeutic strategies. We performed large-scale systematic screens in both C. albicans and the model yeast Saccharomyces cerevisiae to identify genes that enable azole resistance. Our genome-wide screen in S. cerevisiae identified nine determinants of azole resistance, only two of which were important for resistance in C. albicans. Our screen of C. albicans mutants identified 13 genes for which deletion enhances susceptibility to azoles, including RGD1 and PEP8. We found that loss of Pep8 overwhelms the functional capacity of a key stress response regulator, calcineurin. In contrast, amplification of chromosome 7 and the right portion of chromosome 3 can restore resistance in strains lacking Rgd1, suggesting that Rgd1 may enable azole resistance by inducing genes in these amplified regions. Specifically, overexpression of a gene involved in transport on chromosome 3, NPR2, was sufficient to restore azole resistance in the absence of Rgd1. Thus, we establish novel circuitry important for antifungal drug resistance, and uncover adaptive mechanisms involving genomic plasticity that occur in response to drug induced stress.
Collapse
Affiliation(s)
| | - Nicole M. Revie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert T. Todd
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Kaitlin Anstett
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Zaccagnino A, Managò A, Leanza L, Gontarewitz A, Linder B, Azzolini M, Biasutto L, Zoratti M, Peruzzo R, Legler K, Trauzold A, Kalthoff H, Szabo I. Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget 2018; 8:38276-38293. [PMID: 27542263 PMCID: PMC5503532 DOI: 10.18632/oncotarget.11299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries. Unfortunately, the overall 5-year survival rate is still less than 5%. The most frequent oncogenic mutations in PDAC are loss-of function mutations in p53 and gain-of-function mutations in KRAS. Here we show that clofazimine (Lamprene), a drug already used in the clinic for autoimmune diseases and leprosy, is able to efficiently kill in vitro five different PDAC cell lines harboring p53 mutations. We provide evidence that clofazimine induces apoptosis in PDAC cells with an EC50 in the μM range via its specific inhibitory action on the potassium channel Kv1.3. Intraperitoneal injection of clofazimine resulted in its accumulation in the pancreas of mice 8 hours after administration. Using an orthotopic PDAC xenotransplantation model in SCID beige mouse, we show that clofazimine significantly and strongly reduced the primary tumor weight. Thus, our work identifies clofazimine as a promising therapeutic agent against PDAC and further highlights ion channels as possible oncological targets.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Artur Gontarewitz
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Bernhard Linder
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Karen Legler
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
43
|
Enioutina EY, Teng L, Fateeva TV, Brown JCS, Job KM, Bortnikova VV, Krepkova LV, Gubarev MI, Sherwin CMT. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Rev Clin Pharmacol 2017; 10:1203-1214. [PMID: 28836870 DOI: 10.1080/17512433.2017.1371591] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION In the modern antimicrobial era, the rapid spread of resistance to antibiotics and introduction of new and mutating viruses is a global concern. Combating antimicrobial resistant microbes (AMR) requires coordinated international efforts that incorporate new conventional antibiotic development as well as development of alternative drugs with antimicrobial activity, management of existing antimicrobials, and rapid detection of AMR pathogens. Areas covered: This manuscript discusses some conventional strategies to control microbial resistance. The main purpose of the manuscript is to present information on specific herbal medicines that may serve as good treatment alternatives to conventional antimicrobials for infections sensitive to conventional as well as resistant strains of microorganisms. Expert commentary: Identification of potential new antimicrobials is challenging; however, one source for potential structurally diverse and complex antimicrobials are natural products. Natural products may have advantages over other post-germ theory antimicrobials. Many antimicrobial herbal medicines possess simultaneous antibacterial, antifungal, antiprotozoal and/or antiviral properties. Herbal products have the potential to boost host resistance to infections, particularly in immunocompromised patients. Antimicrobial broad-spectrum activity in conjunction with immunostimulatory properties may help to prevent microbial resistance to herbal medicine. As part of the efforts to broaden use of herbal medicines to treat microbial infections, pre-clinical and clinical testing guidelines of these compounds as a whole should be implemented to ensure consistency in formulation, efficacy and safety.
Collapse
Affiliation(s)
- Elena Yu Enioutina
- a Division of Clinical Pharmacology, the Department of Pediatrics, School of Medicine , University of Utah , Salt Lake City , UT , USA.,b Department of Pathology, School of Medicine , University of Utah , Salt Lake City , UT , USA
| | - Lida Teng
- c Department of Drug Policy & Management (DPM), Graduate School of Pharmaceutical Sciences , The University of Tokyo , Tokyo , Japan
| | - Tatyana V Fateeva
- d Center of Medicine , All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR) , Moscow , Russia
| | - Jessica C S Brown
- b Department of Pathology, School of Medicine , University of Utah , Salt Lake City , UT , USA
| | - Kathleen M Job
- a Division of Clinical Pharmacology, the Department of Pediatrics, School of Medicine , University of Utah , Salt Lake City , UT , USA
| | - Valentina V Bortnikova
- d Center of Medicine , All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR) , Moscow , Russia
| | - Lubov V Krepkova
- d Center of Medicine , All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR) , Moscow , Russia
| | | | - Catherine M T Sherwin
- a Division of Clinical Pharmacology, the Department of Pediatrics, School of Medicine , University of Utah , Salt Lake City , UT , USA.,f Department of Pharmacology and Toxicology , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
44
|
Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens. Antimicrob Agents Chemother 2017; 61:AAC.00829-17. [PMID: 28674054 PMCID: PMC5571344 DOI: 10.1128/aac.00829-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is a major cause of fungal diseases in humans, and its resistance to available drugs is of concern. In an attempt to identify novel antifungal agents, we initiated a small-scale screening of a library of 199 natural plant compounds (i.e., natural products [NPs]). In vitro susceptibility profiling experiments identified 33 NPs with activity against C. albicans (MIC50s ≤ 32 μg/ml). Among the selected NPs, the sterol alkaloid tomatidine was further investigated. Tomatidine originates from the tomato (Solanum lycopersicum) and exhibited high levels of fungistatic activity against Candida species (MIC50s ≤ 1 μg/ml) but no cytotoxicity against mammalian cells. Genome-wide transcriptional analysis of tomatidine-treated C. albicans cells revealed a major alteration (upregulation) in the expression of ergosterol genes, suggesting that the ergosterol pathway is targeted by this NP. Consistent with this transcriptional response, analysis of the sterol content of tomatidine-treated cells showed not only inhibition of Erg6 (C-24 sterol methyltransferase) activity but also of Erg4 (C-24 sterol reductase) activity. A forward genetic approach in Saccharomyces cerevisiae coupled with whole-genome sequencing identified 2 nonsynonymous mutations in ERG6 (amino acids D249G and G132D) responsible for tomatidine resistance. Our results therefore unambiguously identified Erg6, a C-24 sterol methyltransferase absent in mammals, to be the main direct target of tomatidine. We tested the in vivo efficacy of tomatidine in a mouse model of C. albicans systemic infection. Treatment with a nanocrystal pharmacological formulation successfully decreased the fungal burden in infected kidneys compared to the fungal burden achieved by the use of placebo and thus confirmed the potential of tomatidine as a therapeutic agent.
Collapse
|
45
|
Abstract
Chemical-genetic approaches are based on measuring the cellular outcome of combining genetic and chemical perturbations in large-numbers in tandem. In these approaches the contribution of every gene to the fitness of an organism is measured upon exposure to different chemicals. Current technological advances enable the application of chemical genetics to almost any organism and at an unprecedented throughput. Here we review the underlying concepts behind chemical genetics, present its different vignettes and illustrate how such approaches can propel drug discovery.
Collapse
Affiliation(s)
- Elisabetta Cacace
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
46
|
Brown AJP, Cowen LE, di Pietro A, Quinn J. Stress Adaptation. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0048-2016. [PMID: 28721857 PMCID: PMC5701650 DOI: 10.1128/microbiolspec.funk-0048-2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
Fungal species display an extraordinarily diverse range of lifestyles. Nevertheless, the survival of each species depends on its ability to sense and respond to changes in its natural environment. Environmental changes such as fluctuations in temperature, water balance or pH, or exposure to chemical insults such as reactive oxygen and nitrogen species exert stresses that perturb cellular homeostasis and cause molecular damage to the fungal cell. Consequently, fungi have evolved mechanisms to repair this damage, detoxify chemical insults, and restore cellular homeostasis. Most stresses are fundamental in nature, and consequently, there has been significant evolutionary conservation in the nature of the resultant responses across the fungal kingdom and beyond. For example, heat shock generally induces the synthesis of chaperones that promote protein refolding, antioxidants are generally synthesized in response to an oxidative stress, and osmolyte levels are generally increased following a hyperosmotic shock. In this article we summarize the current understanding of these and other stress responses as well as the signaling pathways that regulate them in the fungi. Model yeasts such as Saccharomyces cerevisiae are compared with filamentous fungi, as well as with pathogens of plants and humans. We also discuss current challenges associated with defining the dynamics of stress responses and with the elaboration of fungal stress adaptation under conditions that reflect natural environments in which fungal cells may be exposed to different types of stresses, either sequentially or simultaneously.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Antonio di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071 Córdoba, Spain
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
47
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
48
|
Wambaugh MA, Shakya VPS, Lewis AJ, Mulvey MA, Brown JCS. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLoS Biol 2017; 15:e2001644. [PMID: 28632788 PMCID: PMC5478098 DOI: 10.1371/journal.pbio.2001644] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Infective Agents, Urinary/chemistry
- Anti-Infective Agents, Urinary/pharmacology
- Anti-Infective Agents, Urinary/therapeutic use
- Bacterial Proteins/antagonists & inhibitors
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biological Assay
- Computational Biology
- Drug Design
- Drug Resistance, Multiple, Bacterial
- Drug Synergism
- Drug Therapy, Combination
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/microbiology
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Folic Acid Antagonists/chemistry
- Folic Acid Antagonists/pharmacology
- Folic Acid Antagonists/therapeutic use
- High-Throughput Screening Assays
- Klebsiella Infections/drug therapy
- Klebsiella Infections/metabolism
- Klebsiella Infections/microbiology
- Klebsiella pneumoniae/drug effects
- Klebsiella pneumoniae/growth & development
- Klebsiella pneumoniae/metabolism
- Microbial Sensitivity Tests
- Mutation
- Mutation Rate
- Pattern Recognition, Automated
- Reverse Transcriptase Inhibitors/chemistry
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Small Molecule Libraries
- Sulfamethizole/agonists
- Sulfamethizole/chemistry
- Sulfamethizole/pharmacology
- Sulfamethizole/therapeutic use
- Trimethoprim/agonists
- Trimethoprim/chemistry
- Trimethoprim/pharmacology
- Trimethoprim/therapeutic use
- Zebrafish/embryology
Collapse
Affiliation(s)
- Morgan A. Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Viplendra P. S. Shakya
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jessica C. S. Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
49
|
|
50
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|