1
|
Su K, Zhao Z, Wang Y, Sun S, Liu X, Zhang C, Jiang Y, Du X. NAT10 resolves harmful nucleolar R-loops depending on its helicase domain and acetylation of DDX21. Cell Commun Signal 2024; 22:490. [PMID: 39394182 PMCID: PMC11468200 DOI: 10.1186/s12964-024-01869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Aberrant accumulation of R-loops leads to DNA damage, genome instability and even cell death. Therefore, the timely removal of harmful R-loops is essential for the maintenance of genome integrity. Nucleolar R-loops occupy up to 50% of cellular R-loops due to the frequent activation of Pol I transcription. However, the mechanisms involved in the nucleolar R-loop resolution remain elusive. The nucleolar acetyltransferase NAT10 harbors a putative RecD helicase domain (RHD), however, if NAT10 acts in the R-loop resolution is still unknown. METHODS NAT10 knockdown cell lines were constructed using CRISPR/Cas9 technology and short hairpin RNA targeting NAT10 mRNA, respectively. The level of R-loops was detected by immunofluorescent staining combined with RNase H treatment. The helicase activity of NAT10 or DDX21 was determined by in vitro helicase experiment. The interaction between NAT10 and DDX21 was verified by co-immunoprecipitation, immunofluorescent staining and GST pull-down experiments. Acetylation sites of DDX21 by NAT10 were analyzed by mass spectrometry. NAT10 knockdown-induced DNA damage was evaluated by immunofluorescent staining and Western blot detecting γH2AX. RESULTS Depletion of NAT10 led to the accumulation of nucleolar R-loops. NAT10 resolves R-loops through an RHD in vitro and in cells. However, Flag-NAT10 ∆RHD mutant still partially reduced R-loop levels in the NAT10-depleted cells, suggesting that NAT10 might resolve R-loops through additional pathways. Further, the acetyltransferase activity of NAT10 is required for the nucleolar R-loop resolution. NAT10 acetylates DDX21 at K236 and K573 to enhance the helicase activity of DDX21 to unwind nucleolar R-loops. The helicase activity of DDX21 significantly decreased by Flag-DDX21 2KR and increased by Flag-DDX21 2KQ in cells and in vitro. Consequently, NAT10 depletion-induced nucleolar R-loop accumulation led to DNA damage, which was rescued by co-expression of Flag-DDX21 2KQ and Flag-NAT10 G641E, demonstrating that NAT10 resolves nucleolar R-loops through bipartite pathways. CONCLUSION We demonstrate that NAT10 is a novel R-loop resolvase and it resolves nucleolar R-loops depending on its helicase activity and acetylation of DDX21. The cooperation of NAT10 and DDX21 provides comprehensive insights into the nucleolar R-loop resolution for maintaining genome stability.
Collapse
Affiliation(s)
- Kunqi Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhuochen Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuying Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
2
|
Urbancokova A, Hornofova T, Novak J, Salajkova SA, Stemberkova Hubackova S, Uvizl A, Buchtova T, Mistrik M, McStay B, Hodny Z, Bartek J, Vasicova P. Topological stress triggers persistent DNA lesions in ribosomal DNA with ensuing formation of PML-nucleolar compartment. eLife 2024; 12:RP91304. [PMID: 39388244 PMCID: PMC11466457 DOI: 10.7554/elife.91304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.
Collapse
Affiliation(s)
- Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Terezie Hornofova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sarka Andrs Salajkova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sona Stemberkova Hubackova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Alena Uvizl
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Buchtova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University OlomoucOlomoucCzech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University OlomoucOlomoucCzech Republic
| | - Brian McStay
- Centre for Chromosome Biology, College of Science and Engineering, University of GalwayGalwayIreland
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Genome Integrity Unit, Danish Cancer Society Research CenterCopenhagenDenmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
3
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
4
|
Gál Z, Boukoura S, Oxe KC, Badawi S, Nieto B, Korsholm LM, Geisler SB, Dulina E, Rasmussen AV, Dahl C, Lv W, Xu H, Pan X, Arampatzis S, Stratou DE, Galanos P, Lin L, Guldberg P, Bartek J, Luo Y, Larsen DH. Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation. Nat Commun 2024; 15:7797. [PMID: 39242676 PMCID: PMC11379943 DOI: 10.1038/s41467-024-52189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.
Collapse
Affiliation(s)
- Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Stavroula Boukoura
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Kezia Catharina Oxe
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Sara Badawi
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Lea Milling Korsholm
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ekaterina Dulina
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | | | - Christina Dahl
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Wei Lv
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
| | - Per Guldberg
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, 5000, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm, Sweden
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Huang J, Jiang Z, Ruan Z, Sheng H, Liu S, Dong X, Su X, Feng L, Li Y, Xu H, Chen J, Xia H, Li T, Li J, Xu L, Lou J. Cr (VI)-induced ribosomal DNA copy number variation is associated with semen quality impairment: Evidence from human to animal study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116700. [PMID: 38981392 DOI: 10.1016/j.ecoenv.2024.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVES This study aimed to analyze the possible role of rDNA copy number variation in the association between hexavalent chromium [Cr (VI)] exposure and semen quality in semen donors and further confirm this association in mice. METHODS In this cross-sectional study, whole blood and semen samples were collected from 155 semen donors in the Zhejiang Human Sperm Bank from January 1st to April 31st, 2021. Adult C57BL/6 J male mice were treated with different doses of Cr (VI) (0, 10, or 15 mg/kg b.w./day). Semen quality, including semen volume, total spermatozoa count, sperm concentration, progressive motility, and total motility, were analyzed according to the WHO laboratory manual. Cr concentration was detected using inductively coupled plasma mass spectrometry. The rDNA copy number was measured using qPCR. RESULTS In semen donors, whole blood Cr concentration was negatively associated with semen concentration and total sperm counts. Semen 5 S and 45 S rDNA copy numbers were negatively associated with whole blood Cr concentration and whole blood 5.8 S rDNA copy number was negatively associated with semen Cr concentration. In mice, Cr (VI) damaged testicular tissue, decreased semen quality, and caused rDNA copy number variation. Semen quality was related to the rDNA copy number in whole blood, testicular tissue, and semen samples in mice. CONCLUSION Cr (VI) was associated with decreased semen quality in semen donors and mice. Our findings suggest an in-depth analysis of the role of the rDNA copy number variation in the Cr (VI)-induced impairment of semen quality.
Collapse
Affiliation(s)
- Jing Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Huiqiang Sheng
- Zhejiang Mater Child and Reproductive Health Center, Hangzhou, Zhejiang Province, China
| | - Shuang Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Xin Su
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Tao Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Jiaping Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Ling Xu
- Zhejiang Mater Child and Reproductive Health Center, Hangzhou, Zhejiang Province, China.
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang Province, China; School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Otarbayev D, Myung K. Exploring factors influencing choice of DNA double-strand break repair pathways. DNA Repair (Amst) 2024; 140:103696. [PMID: 38820807 DOI: 10.1016/j.dnarep.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe threats to genomic integrity, demanding intricate repair mechanisms within eukaryotic cells. A diverse array of factors orchestrates the complex choreography of DSB signaling and repair, encompassing repair pathways, such as non-homologous end-joining, homologous recombination, and polymerase-θ-mediated end-joining. This review looks into the intricate decision-making processes guiding eukaryotic cells towards a particular repair pathway, particularly emphasizing the processing of two-ended DSBs. Furthermore, we elucidate the transformative role of Cas9, a site-specific endonuclease, in revolutionizing our comprehension of DNA DSB repair dynamics. Additionally, we explore the burgeoning potential of Cas9's remarkable ability to induce sequence-specific DSBs, offering a promising avenue for precise targeting of tumor cells. Through this comprehensive exploration, we unravel the intricate molecular mechanisms of cellular responses to DSBs, shedding light on both fundamental repair processes and cutting-edge therapeutic strategies.
Collapse
Affiliation(s)
- Daniyar Otarbayev
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| |
Collapse
|
7
|
Palek M, Palkova N, Kleiblova P, Kleibl Z, Macurek L. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res 2024; 52:7687-7703. [PMID: 38884202 PMCID: PMC11260465 DOI: 10.1093/nar/gkae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.
Collapse
Affiliation(s)
- Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
8
|
Donnio LM, Giglia-Mari G. Keep calm and reboot - how cells restart transcription after DNA damage and DNA repair. FEBS Lett 2024. [PMID: 38991979 DOI: 10.1002/1873-3468.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 07/13/2024]
Abstract
The effects of genotoxic agents on DNA and the processes involved in their removal have been thoroughly studied; however, very little is known about the mechanisms governing the reinstatement of cellular activities after DNA repair, despite restoration of the damage-induced block of transcription being essential for cell survival. In addition to impeding transcription, DNA lesions have the potential to disrupt the precise positioning of chromatin domains within the nucleus and alter the meticulously organized architecture of the nucleolus. Alongside the necessity of resuming transcription mediated by RNA polymerase 1 and 2 transcription, it is crucial to restore the structure of the nucleolus to facilitate optimal ribosome biogenesis and ensure efficient and error-free translation. Here, we examine the current understanding of how transcriptional activity from RNA polymerase 2 is reinstated following DNA repair completion and explore the mechanisms involved in reassembling the nucleolus to safeguard the correct progression of cellular functions. Given the lack of information on this vital function, this Review seeks to inspire researchers to explore deeper into this specific subject and offers essential suggestions on how to investigate this complex and nearly unexplored process further.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, 69008, France
| | - Giuseppina Giglia-Mari
- Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, 69008, France
| |
Collapse
|
9
|
Elguweidi A, Crease T. Copy number and sequence variation in rDNA of Daphnia pulex from natural populations: insights from whole-genome sequencing. G3 (BETHESDA, MD.) 2024; 14:jkae105. [PMID: 38771699 PMCID: PMC11228840 DOI: 10.1093/g3journal/jkae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 02/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Ribosomal DNA (rDNA) has a vital role in ribosome biogenesis as it contains the genes that encode ribosomal RNA (rRNA) separated by intergenic spacers (IGSs). The rRNA genes occur in hundreds to tens of thousands of copies per haploid genome in eukaryotes and are generally highly conserved with low variation within species. Due to the repetitive nature and large size of rDNA arrays, detecting intraindividual variation can be difficult. In this study, we use whole-genome sequences of 169 Daphnia pulex individuals from 10 natural populations to measure the copy number and sequence variation in rDNA. This revealed that variation in rDNA copy number between individuals spans an order of magnitude. We further observed a substantial level of sequence variation within individual genomes. As expected, single-nucleotide polymorphisms occurred in regions of lower functional constraint such as the IGS and expansion segments of the rRNA genes. The presence of strong linkage disequilibrium among variants facilitated identification of haplotypes within each population. Although there was evidence of recombination among haplotypes from different populations, it is insufficient to eliminate linkage disequilibrium within populations. Estimating copy number and haplotype diversity within individuals revealed that the level of intraindividual sequence variation is not strongly correlated with copy number. The observed patterns of variation highlight a complex evolutionary history of rDNA in D. pulex. Future research should explore the functional implications of rDNA copy number and sequence variation on organismal phenotypes.
Collapse
Affiliation(s)
- Abir Elguweidi
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Teresa Crease
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
10
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
11
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
12
|
Wang Z, Castillo-González CM, Zhao C, Tong CY, Li C, Zhong S, Liu Z, Xie K, Zhu J, Wu Z, Peng X, Jacob Y, Michaels SD, Jacobsen SE, Zhang X. H3.1K27me1 loss confers Arabidopsis resistance to Geminivirus by sequestering DNA repair proteins onto host genome. Nat Commun 2023; 14:7484. [PMID: 37980416 PMCID: PMC10657422 DOI: 10.1038/s41467-023-43311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Changjiang Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhiyang Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kaili Xie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhongshou Wu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xu Peng
- Department of Molecular Physiology, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Yannick Jacob
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Scott D Michaels
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
de Menezes Cavalcante Sassi F, Sember A, Deon GA, Liehr T, Padutsch N, Oyakawa OT, Vicari MR, Bertollo LAC, Moreira-Filho O, de Bello Cioffi M. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X 1X 2Y sex chromosome system origin. Sci Rep 2023; 13:15756. [PMID: 37735233 PMCID: PMC10514344 DOI: 10.1038/s41598-023-42617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Collapse
Affiliation(s)
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, Czech Republic
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Niklas Padutsch
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
14
|
Friskes A, Koob L, Krenning L, Severson TM, Koeleman E, Vergara X, Schubert M, van den Berg J, Evers B, Manjón AG, Joosten S, Kim Y, Zwart W, Medema R. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res 2022; 50:9930-9947. [PMID: 36107780 PMCID: PMC9508844 DOI: 10.1093/nar/gkac758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions. This implies that not all DSBs are equally toxic, and raises the question if the location of a single double-strand break could influence its toxicity. To systematically investigate if DSB-location is a determinant of toxicity we performed a CRISPR/Cas9 screen targeting 6237 single sites in the human genome. Next, we developed a data-driven framework to design CRISPR/Cas9 sgRNA (crRNA) pools targeting specific chromatin features. The chromatin context was defined using ChromHMM states, Lamin-B1 DAM-iD, DNAseI hypersensitivity, and RNA-sequencing data. We computationally designed 6 distinct crRNA pools, each containing 10 crRNAs targeting the same chromatin state. We show that the toxicity of a DSB is highly similar across the different ChromHMM states. Rather, we find that the major determinants of toxicity of a sgRNA are cutting efficiency and off-target effects. Thus, chromatin features have little to no effect on the toxicity of a single CRISPR/Cas9-induced DSB.
Collapse
Affiliation(s)
- Anoek Friskes
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lisa Koob
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenno Krenning
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tesa M Severson
- Oncode Institute, Division of Oncogenomics, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Emma S Koeleman
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Xabier Vergara
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeroen van den Berg
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bastiaan Evers
- Oncode Institute, Division of Molecular Carcinogenesis and NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anna G Manjón
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Stacey Joosten
- Oncode Institute, Division of Oncogenomics, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Yongsoo Kim
- Oncode Institute, Division of Oncogenomics, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, Division of Oncogenomics, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René H Medema
- Oncode Institute, Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Snyers L, Laffer S, Löhnert R, Weipoltshammer K, Schöfer C. CX-5461 causes nucleolar compaction, alteration of peri- and intranucleolar chromatin arrangement, an increase in both heterochromatin and DNA damage response. Sci Rep 2022; 12:13972. [PMID: 35978024 PMCID: PMC9385865 DOI: 10.1038/s41598-022-17923-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we characterize the changes in nucleolar morphology and its dynamics induced by the recently introduced compound CX-5461, an inhibitor of ribosome synthesis. Time-lapse imaging, immunofluorescence and ultrastructural analysis revealed that exposure of cells to CX-5461 has a profound impact on their nucleolar morphology and function: nucleoli acquired a compact, spherical shape and display enlarged, ring-like masses of perinucleolar condensed chromatin. Tunnels consisting of chromatin developed as transient structures running through nucleoli. Nucleolar components involved in rRNA transcription, fibrillar centres and dense fibrillar component with their major constituents ribosomal DNA, RNA polymerase I and fibrillarin maintain their topological arrangement but become reduced in number and move towards the nucleolar periphery. Nucleolar changes are paralleled by an increased amount of the DNA damage response indicator γH2AX and DNA unwinding enzyme topoisomerase I in nucleoli and the perinucleolar area suggesting that CX-5461 induces torsional stress and DNA damage in rDNA. This is corroborated by the irreversibility of the observed altered nucleolar phenotypes. We demonstrate that incubation with CX-5461, apart from leading to specific morphological alterations, increases senescence and decreases cell replication. We discuss that these alterations differ from those observed with other drugs interfering with nucleolar functions.
Collapse
Affiliation(s)
- Luc Snyers
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Sylvia Laffer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Renate Löhnert
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Tsaridou S, Velimezi G, Willenbrock F, Chatzifrangkeskou M, Elsayed W, Panagopoulos A, Karamitros D, Gorgoulis V, Lygerou Z, Roukos V, O'Neill E, Pefani DE. 53BP1-mediated recruitment of RASSF1A to ribosomal DNA breaks promotes local ATM signaling. EMBO Rep 2022; 23:e54483. [PMID: 35758159 PMCID: PMC9346497 DOI: 10.15252/embr.202154483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022] Open
Abstract
DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Velimezi
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | - Dimitris Karamitros
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, Manchester Academic Health Centre, University of Manchester, Manchester, UK.,Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Roukos
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
17
|
Karyka E, Berrueta Ramirez N, Webster CP, Marchi PM, Graves EJ, Godena VK, Marrone L, Bhargava A, Ray S, Ning K, Crane H, Hautbergue GM, El-Khamisy SF, Azzouz M. SMN-deficient cells exhibit increased ribosomal DNA damage. Life Sci Alliance 2022; 5:e202101145. [PMID: 35440492 PMCID: PMC9018017 DOI: 10.26508/lsa.202101145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.
Collapse
Affiliation(s)
- Evangelia Karyka
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Nelly Berrueta Ramirez
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Christopher P Webster
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily J Graves
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Vinay K Godena
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Lara Marrone
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Swagat Ray
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Ke Ning
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Hannah Crane
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Mimoun Azzouz
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Oxe KC, Larsen DH. Treacle is Upregulated in Cancer and Correlates With Poor Prognosis. Front Cell Dev Biol 2022; 10:918544. [PMID: 35794866 PMCID: PMC9251355 DOI: 10.3389/fcell.2022.918544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Treacle/TCOF1 is an adaptor protein specifically associated with nucleolar chromatin. In the nucleolus it stimulates ribosome biogenesis, thereby promoting growth and proliferation. A second role of Treacle has emerged as a coordinator of the nucleolar responses to DNA damage, where it facilitates nucleolar DNA repair and cellular survival after genotoxic insults. The involvement of Treacle in multiple fundamental processes such as growth, proliferation, and genome stability, which are tightly linked to cancer, raises the question of Treacle’s role in the development of this disease. On one hand, overexpression of Treacle could stimulate nucleolar transcription and ribosome biogenesis providing a growth advantage in cancer cells. On the other hand, the function of Treacle as a gatekeeper in response to nucleolar DNA damage could favor mutations that would impair its function. In this perspective, we analyze paired Treacle expression data from the Cancer Genome Atlas (TCGA) and correlate expression with patient survival in different cancer types. We also discuss other recently published observations of relevance to the role of Treacle in cancer. In light of these new observations, we propose possible roles of Treacle in carcinogenesis and discuss its potential as a therapeutic target.
Collapse
|
19
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Gál Z, Nieto B, Boukoura S, Rasmussen AV, Larsen DH. Treacle Sticks the Nucleolar Responses to DNA Damage Together. Front Cell Dev Biol 2022; 10:892006. [PMID: 35646927 PMCID: PMC9133508 DOI: 10.3389/fcell.2022.892006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023] Open
Abstract
The importance of chromatin environment for DNA repair has gained increasing recognition in recent years. The nucleolus is the largest sub-compartment within the nucleus: it has distinct biophysical properties, selective protein retention, and houses the specialized ribosomal RNA genes (collectively referred to as rDNA) with a unique chromatin composition. These genes have high transcriptional activity and a repetitive nature, making them susceptible to DNA damage and resulting in the highest frequency of rearrangements across the genome. A distinct DNA damage response (DDR) secures the fidelity of this genomic region, the so-called nucleolar DDR (n-DDR). The composition of the n-DDR reflects the characteristics of nucleolar chromatin with the nucleolar protein Treacle (also referred to as TCOF1) as a central coordinator retaining several well-characterized DDR proteins in the nucleolus. In this review, we bring together data on the structure of Treacle, its known functions in ribosome biogenesis, and its involvement in multiple branches of the n-DDR to discuss their interconnection. Furthermore, we discuss how the functions of Treacle in ribosome biogenesis and in the n-DDR may contribute to Treacher Collins Syndrome, a disease caused by mutations in Treacle. Finally, we outline outstanding questions that need to be addressed for a more comprehensive understanding of Treacle, the n-DDR, and the coordination of ribosome biogenesis and DNA repair.
Collapse
|
21
|
Mitrentsi I, Lou J, Kerjouan A, Verigos J, Reina-San-Martin B, Hinde E, Soutoglou E. Heterochromatic repeat clustering imposes a physical barrier on homologous recombination to prevent chromosomal translocations. Mol Cell 2022; 82:2132-2147.e6. [PMID: 35447083 PMCID: PMC9616805 DOI: 10.1016/j.molcel.2022.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 12/15/2021] [Accepted: 03/28/2022] [Indexed: 01/01/2023]
Abstract
Mouse pericentromeric DNA is composed of tandem major satellite repeats, which are heterochromatinized and cluster together to form chromocenters. These clusters are refractory to DNA repair through homologous recombination (HR). The mechanisms by which pericentromeric heterochromatin imposes a barrier on HR and the implications of repeat clustering are unknown. Here, we compare the spatial recruitment of HR factors upon double-stranded DNA breaks (DSBs) induced in human and mouse pericentromeric heterochromatin, which differ in their capacity to form clusters. We show that while DSBs increase the accessibility of human pericentromeric heterochromatin by disrupting HP1α dimerization, mouse pericentromeric heterochromatin repeat clustering imposes a physical barrier that requires many layers of de-compaction to be accessed. Our results support a model in which the 3D organization of heterochromatin dictates the spatial activation of DNA repair pathways and is key to preventing the activation of HR within clustered repeats and the onset of chromosomal translocations. DSBs at human pericentric HC are positionally stable and recruit HR factors Repeat clustering restricts Rad51 at the periphery of heterochromatin Human pericentromeric HC is more accessible to HR factors than mouse HC Inhibition of DSB relocation at clustered repeats leads to translocations
Collapse
Affiliation(s)
- Ioanna Mitrentsi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Adèle Kerjouan
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - John Verigos
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France; Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK.
| |
Collapse
|
22
|
Hornofova T, Pokorna B, Hubackova SS, Uvizl A, Kosla J, Bartek J, Hodny Z, Vasicova P. Phospho-SIM and exon8b of PML protein regulate formation of doxorubicin-induced rDNA-PML compartment. DNA Repair (Amst) 2022; 114:103319. [DOI: 10.1016/j.dnarep.2022.103319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
|
23
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
24
|
The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091415. [PMID: 34573397 PMCID: PMC8467445 DOI: 10.3390/genes12091415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate gene expression and help maintain nuclear structure. These different chromatin environments each demand a tailored response to DNA damage. Silenced chromatin domains in particular present a major challenge to the cell’s DNA repair machinery due to their specific biophysical properties and distinct, often repetitive, DNA content. To this end, we here discuss the interplay between silenced chromatin domains and DNA damage repair, specifically double-strand breaks, and how these processes help maintain genome stability.
Collapse
|
25
|
Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase. Nat Commun 2021; 12:4918. [PMID: 34389719 PMCID: PMC8363623 DOI: 10.1038/s41467-021-25205-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal RNA genes (rDNA) are highly unstable and susceptible to rearrangement due to their repetitive nature and active transcriptional status. Sequestration of rDNA in the nucleolus suppresses uncontrolled recombination. However, broken repeats must be first released to the nucleoplasm to allow repair by homologous recombination. Nucleolar release of broken rDNA repeats is conserved from yeast to humans, but the underlying molecular mechanisms are currently unknown. Here we show that DNA damage induces phosphorylation of the CLIP-cohibin complex, releasing membrane-tethered rDNA from the nucleolus in Saccharomyces cerevisiae. Downstream of phosphorylation, SUMOylation of CLIP-cohibin is recognized by Ufd1 via its SUMO-interacting motif, which targets the complex for disassembly through the Cdc48/p97 chaperone. Consistent with a conserved mechanism, UFD1L depletion in human cells impairs rDNA release. The dynamic and regulated assembly and disassembly of the rDNA-tethering complex is therefore a key determinant of nucleolar rDNA release and genome integrity.
Collapse
|
26
|
Lou J, Yu S, Feng L, Guo X, Wang M, Branco AT, Li T, Lemos B. Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]. ENVIRONMENT INTERNATIONAL 2021; 153:106525. [PMID: 33774497 PMCID: PMC8477438 DOI: 10.1016/j.envint.2021.106525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
Hexavalent Chromium [Cr (VI)] is an established toxicant, carcinogen, and a significant source of public health concern. The multicopy ribosomal DNA (rDNA) array is mechanistically linked to aging and cancer, is the most evolutionarily conserved segment of the human genome, and gives origin to nucleolus, a nuclear organelle where ribosomes are assembled. Here we show that exposure to Cr (VI) induces instability in the rDNA, triggering cycles of rapid, specific, and transient amplification and contraction of the array in human cells. The dynamic of environmentally responsive rDNA copy number (CN) amplification and contraction occurs at doses to which millions of individuals are regularly exposed. Finally, analyses of human populations occupationally exposed to Cr (VI) indicate that environmental exposure history and drinking habits but not age shape extensive naturally occurring rDNA copy number variation. Our observations identify a novel pathway of response to hexavalent chromium exposure and raise the prospect that a suite of environmental determinants of rDNA copy number remain to be discovered.
Collapse
Affiliation(s)
- Jianlin Lou
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xinnian Guo
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Meng Wang
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alan T Branco
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tao Li
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
27
|
Xuan J, Gitareja K, Brajanovski N, Sanij E. Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes (Basel) 2021; 12:genes12081156. [PMID: 34440328 PMCID: PMC8393943 DOI: 10.3390/genes12081156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
Collapse
Affiliation(s)
- Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kezia Gitareja
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine -St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-5279
| |
Collapse
|
28
|
Lesage E, Clouaire T, Legube G. Repair of DNA double-strand breaks in RNAPI- and RNAPII-transcribed loci. DNA Repair (Amst) 2021; 104:103139. [PMID: 34111758 DOI: 10.1016/j.dnarep.2021.103139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are toxic lesions triggered not only by environmental sources, but also by a large number of physiological processes. Of importance, endogenous DSBs frequently occur in genomic loci that are transcriptionally active. Recent work suggests that DSBs occurring in transcribed loci are handled by specific pathway(s) that entail local transcriptional repression, chromatin signaling, the involvement of RNA species and DSB mobility. In this Graphical Review we provide an updated view of the "Transcription-Coupled DSB Repair" (TC-DSBR) pathway(s) that are mounted at DSBs occurring in loci transcribed by RNA Polymerase I (RNAPI) or RNA Polymerase II (RNAPII), highlighting differences and common features, as well as yet unanswered questions.
Collapse
Affiliation(s)
- E Lesage
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - T Clouaire
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - G Legube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France.
| |
Collapse
|
29
|
|
30
|
Dong C, An L, Yu CH, Huen MSY. A DYRK1B-dependent pathway suppresses rDNA transcription in response to DNA damage. Nucleic Acids Res 2021; 49:1485-1496. [PMID: 33469661 PMCID: PMC7897492 DOI: 10.1093/nar/gkaa1290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) at ribosomal gene loci trigger inhibition of ribosomal DNA (rDNA) transcription and extensive nucleolar reorganization, including the formation of nucleolar caps where rDNA DSBs engage with canonical DSB signaling and repair factors. While these nucleolar responses underlie maintenance of rDNA stability, the molecular components that drive each of these events remain to be defined. Here we report that full suppression of rRNA synthesis requires the DYRK1B kinase, a nucleolar DSB response that can be uncoupled from ATM-mediated DSB signaling events at the nucleolar periphery. Indeed, by targeting DSBs onto rDNA arrays, we uncovered that chemical inhibition or genetic inactivation of DYRK1B led to sustained nucleolar transcription. Not only does DYRK1B exhibit robust nucleolar accumulation following laser micro-irradiation across cell nuclei, we further showed that DYRK1B is required for rDNA DSB repair and rDNA copy number maintenance, and that DYRK1B-inactivated cells are hypersensitised to DSBs induced at the rDNA arrays. Together, our findings not only identify DYRK1B as a key signaling intermediate that coordinates DSB repair and rDNA transcriptional activities, but also support the idea of specialised DSB responses that operate within the nucleolus to preserve rDNA integrity.
Collapse
Affiliation(s)
- Chao Dong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong S.A.R
| | - Liwei An
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong S.A.R
| | - Cheng-han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong S.A.R
| | - Michael S Y Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong S.A.R
| |
Collapse
|
31
|
Smirnov E, Chmúrčiaková N, Liška F, Bažantová P, Cmarko D. Variability of Human rDNA. Cells 2021; 10:cells10020196. [PMID: 33498263 PMCID: PMC7909238 DOI: 10.3390/cells10020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
Collapse
|
32
|
Gueiderikh A, Maczkowiak-Chartois F, Rouvet G, Souquère-Besse S, Apcher S, Diaz JJ, Rosselli F. Fanconi anemia A protein participates in nucleolar homeostasis maintenance and ribosome biogenesis. SCIENCE ADVANCES 2021; 7:7/1/eabb5414. [PMID: 33523834 PMCID: PMC7775781 DOI: 10.1126/sciadv.abb5414] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Fanconi anemia (FA), the most common inherited bone marrow failure and leukemia predisposition syndrome, is generally attributed to alterations in DNA damage responses due to the loss of function of the DNA repair and replication rescue activities of the FANC pathway. Here, we report that FANCA deficiency, whose inactivation has been identified in two-thirds of FA patients, is associated with nucleolar homeostasis loss, mislocalization of key nucleolar proteins, including nucleolin (NCL) and nucleophosmin 1 (NPM1), as well as alterations in ribosome biogenesis and protein synthesis. FANCA coimmunoprecipitates with NCL and NPM1 in a FANCcore complex-independent manner and, unique among the FANCcore complex proteins, associates with ribosomal subunits, influencing the stoichiometry of the translational machineries. In conclusion, we have identified unexpected nucleolar and translational consequences specifically associated with FANCA deficiency that appears to be involved in both DNA damage and nucleolar stress responses, challenging current hypothesis on FA physiopathology.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Frédérique Maczkowiak-Chartois
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Guillaume Rouvet
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Sylvie Souquère-Besse
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- CNRS-UMS3655, 94805 Villejuif, France
| | - Sébastien Apcher
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- INSERM-UMR1015, 94805 Villejuif, France
| | - Jean-Jacques Diaz
- Université Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69373 Lyon cedex 08, France
| | - Filippo Rosselli
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France.
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| |
Collapse
|
33
|
Sims J, Rabanal FA, Elgert C, von Haeseler A, Schlögelhofer P. It Is Just a Matter of Time: Balancing Homologous Recombination and Non-homologous End Joining at the rDNA Locus During Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:773052. [PMID: 34777453 PMCID: PMC8580885 DOI: 10.3389/fpls.2021.773052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
Ribosomal RNA genes (rDNAs) are located in large domains of hundreds of rDNA units organized in a head-to-tail manner. The proper and stable inheritance of rDNA clusters is of paramount importance for survival. Yet, these highly repetitive elements pose a potential risk to the genome since they can undergo non-allelic exchanges. Here, we review the current knowledge of the organization of the rDNA clusters in Arabidopsis thaliana and their stability during meiosis. Recent findings suggest that during meiosis, all rDNA loci are embedded within the nucleolus favoring non-homologous end joining (NHEJ) as a repair mechanism, while DNA repair via homologous recombination (HR) appears to be a rare event. We propose a model where (1) frequent meiotic NHEJ events generate abundant single nucleotide polymorphisms and insertions/deletions within the rDNA, resulting in a heterogeneous population of rDNA units and (2) rare HR events dynamically change rDNA unit numbers, only to be observed in large populations over many generations. Based on the latest efforts to delineate the entire rDNA sequence in A. thaliana, we discuss evidence supporting this model. The results compiled so far draw a surprising picture of rDNA sequence heterogeneity between individual units. Furthermore, rDNA cluster sizes have been recognized as relatively stable when observing less than 10 generations, yet emerged as major determinant of genome size variation between different A. thaliana ecotypes. The sequencing efforts also revealed that transcripts from the diverse rDNA units yield heterogenous ribosome populations with potential functional implications. These findings strongly motivate further research to understand the mechanisms that maintain the metastable state of rDNA loci.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- *Correspondence: Jason Sims,
| | - Fernando A. Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christiane Elgert
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Peter Schlögelhofer,
| |
Collapse
|
34
|
Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2020; 48:9449-9461. [PMID: 32857853 PMCID: PMC7515731 DOI: 10.1093/nar/gkaa713] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.
Collapse
Affiliation(s)
| | | | - Blanca Nieto
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Oliver Quevedo
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Stavroula Boukoura
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Casper Carstens Lund
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | |
Collapse
|
35
|
Lama-Sherpa TD, Lin VTG, Metge BJ, Weeks SE, Chen D, Samant RS, Shevde LA. Hedgehog signaling enables repair of ribosomal DNA double-strand breaks. Nucleic Acids Res 2020; 48:10342-10352. [PMID: 32894284 PMCID: PMC7544215 DOI: 10.1093/nar/gkaa733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ribosomal DNA (rDNA) consists of highly repeated sequences that are prone to incurring damage. Delays or failure of rDNA double-strand break (DSB) repair are deleterious, and can lead to rDNA transcriptional arrest, chromosomal translocations, genomic losses, and cell death. Here, we show that the zinc-finger transcription factor GLI1, a terminal effector of the Hedgehog (Hh) pathway, is required for the repair of rDNA DSBs. We found that GLI1 is activated in triple-negative breast cancer cells in response to ionizing radiation (IR) and localizes to rDNA sequences in response to both global DSBs generated by IR and site-specific DSBs in rDNA. Inhibiting GLI1 interferes with rDNA DSB repair and impacts RNA polymerase I activity and cell viability. Our findings tie Hh signaling to rDNA repair and this heretofore unknown function may be critically important in proliferating cancer cells.
Collapse
Affiliation(s)
| | - Victor T G Lin
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Weeks
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Preventative Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Blokhina YP, Buchwalter A. Moving fast and breaking things: Incidence and repair of DNA damage within ribosomal DNA repeats. Mutat Res 2020; 821:111715. [PMID: 32717383 DOI: 10.1016/j.mrfmmm.2020.111715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
The genes that code for ribosomal RNA are present in hundreds of tandemly arrayed copies in the human genome. Ribosomal DNA repeats transcribe vast amounts of ribosomal RNA in order to meet the cell's relentless demand for ribosome production. Intrinsic features of ribosomal DNA repeats render them uniquely vulnerable to DNA damage. Sensing and repairing damage to ribosomal DNA involves dramatic spatial reorganization of the nucleolus, the phase-separated nuclear subdomain where ribosomes are made. We highlight recent advances in detecting the incidence of DNA damage and defining the mechanisms of DNA repair on these essential genes.
Collapse
Affiliation(s)
- Yana P Blokhina
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States; Department of Physiology, University of California, San Francisco, San Francisco, CA, United States; Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|
37
|
Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology. Cancers (Basel) 2020; 12:cancers12071813. [PMID: 32640701 PMCID: PMC7408768 DOI: 10.3390/cancers12071813] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus has been known for a long time to fulfill crucial functions in ribosome biogenesis, of which cancer cells can become addicted to in order to produce sufficient amounts of proteins for cell proliferation. Recently, the nucleolus has emerged as a central regulatory hub in many other cancer-relevant processes, including stress sensing, DNA damage response, cell cycle control, and proteostasis. This fostered the idea that nucleolar processes can be exploited in cancer therapy. Interestingly, a significant proportion of poly(ADP-ribose) polymerase 1 (PARP1) molecules are localized in the nucleolus and PARP1 also plays crucial roles in many processes that are important in cancer biology, including genome maintenance, replication, transcription, and chromatin remodeling. Furthermore, during the last years, PARP1 came into focus in oncology since it represents a promising target of pharmacological PARP inhibitors in various types of cancers. Here, we provide an overview of our current understanding on the role of PARP1 in nucleolar functions and discuss potential implications in cancer biology and therapy.
Collapse
|
38
|
Fages J, Chailleux C, Humbert J, Jang SM, Loehr J, Lambert JP, Côté J, Trouche D, Canitrot Y. JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. PLoS Genet 2020; 16:e1008511. [PMID: 32598339 PMCID: PMC7351224 DOI: 10.1371/journal.pgen.1008511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/10/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosomal DNA (rDNA) is the most transcribed genomic region and contains hundreds of tandem repeats. Maintaining these rDNA repeats as well as the level of rDNA transcription is essential for cellular homeostasis. DNA damages generated in rDNA need to be efficiently and accurately repaired and rDNA repeats instability has been reported in cancer, aging and neurological diseases. Here, we describe that the histone demethylase JMJD6 is rapidly recruited to nucleolar DNA damage and is crucial for the relocalisation of rDNA in nucleolar caps. Yet, JMJD6 is dispensable for rDNA transcription inhibition. Mass spectrometry analysis revealed that JMJD6 interacts with the nucleolar protein Treacle and modulates its interaction with NBS1. Moreover, cells deficient for JMJD6 show increased sensitivity to nucleolar DNA damage as well as loss and rearrangements of rDNA repeats upon irradiation. Altogether our data reveal that rDNA transcription inhibition is uncoupled from rDNA relocalisation into nucleolar caps and that JMJD6 is required for rDNA stability through its role in nucleolar caps formation. Ribosomal DNA is composed of repeated sequences and is the most transcribed genomic region. Transcription of rDNA is essential for cellular homeostasis and cell proliferation. Numerous pathologies such as cancer and neurological disorders are associated with defective rDNA repeats maintenance. The mechanisms involved in the control of rDNA integrity involve major DNA repair pathways such as Non-Homologous End Joining and Homologous Recombination. However, how they are controlled and orchestrated is poorly understood. Here, we identified JMJD6 as a new member of the maintenance of rDNA integrity. We observed that JMJD6 controls the recruitment of NBS1 in the nucleolus in order to lead to the proper management of rDNA damages
Collapse
Affiliation(s)
- Jérémie Fages
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Catherine Chailleux
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jonathan Humbert
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Suk-Min Jang
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jérémy Loehr
- Centre de Recherche sur le Cancer de l'Université Laval, axe Endocrinologie et néphrologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jean-Philippe Lambert
- Centre de Recherche sur le Cancer de l'Université Laval, axe Endocrinologie et néphrologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jacques Côté
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yvan Canitrot
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
39
|
Mitrentsi I, Yilmaz D, Soutoglou E. How to maintain the genome in nuclear space. Curr Opin Cell Biol 2020; 64:58-66. [PMID: 32220808 DOI: 10.1016/j.ceb.2020.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 01/27/2023]
Abstract
Genomic instability can be life-threatening. The fine balance between error-free and mutagenic DNA repair pathways is essential for maintaining genome integrity. Recent advances in DNA double-strand break induction and detection techniques have allowed the investigation of DNA damage and repair in the context of the highly complex nuclear structure. These studies have revealed that the 3D genome folding, nuclear compartmentalization and cytoskeletal components control the spatial distribution of DNA lesions within the nuclear space and dictate their mode of repair.
Collapse
Affiliation(s)
- Ioanna Mitrentsi
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Duygu Yilmaz
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France.
| |
Collapse
|
40
|
Storci G, Bacalini MG, Bonifazi F, Garagnani P, De Carolis S, Salvioli S, Olivieri F, Bonafè M. Ribosomal DNA instability: An evolutionary conserved fuel for inflammaging. Ageing Res Rev 2020; 58:101018. [PMID: 31926964 DOI: 10.1016/j.arr.2020.101018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Across eukaryotes, ribosomal DNA (rDNA) loci are characterized by intrinsic genomic instability due to their repetitive nature and their base composition that facilitate DNA double strand breaks and RNA:DNA hybrids formation. In the yeast, ribosomal DNA instability affects lifespan via the formation of extrachromosomal rDNA circles (ERC) that accrue into aged cells. In humans, rDNA instability has long been reported in a variety of progeric syndromes caused by the dysfunction of DNA helicases, but its role in physiological aging and longevity still needs to be clarified. Here we propose that rDNA instability leads to the activation of innate immunity and inflammation via the interaction with the cytoplasmic DNA sensing machinery. Owing to the recent clarified role of cytoplasmic DNA in the pro-inflammatory phenotype of senescent cells, we hypothesize that the accrual of rDNA derived molecules (i.e. ERC and RNA:DNA hybrids) may have a role in aging by contributing to inflammaging i.e. the systemic pro-inflammatory drift that associates with the onset of geriatric syndromes and age related dysfunctions in humans.
Collapse
Affiliation(s)
- Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| | | | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| |
Collapse
|
41
|
Vítor AC, Huertas P, Legube G, de Almeida SF. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci 2020; 7:24. [PMID: 32154266 PMCID: PMC7047327 DOI: 10.3389/fmolb.2020.00024] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
To ward off against the catastrophic consequences of persistent DNA double-strand breaks (DSBs), eukaryotic cells have developed a set of complex signaling networks that detect these DNA lesions, orchestrate cell cycle checkpoints and ultimately lead to their repair. Collectively, these signaling networks comprise the DNA damage response (DDR). The current knowledge of the molecular determinants and mechanistic details of the DDR owes greatly to the continuous development of ground-breaking experimental tools that couple the controlled induction of DSBs at distinct genomic positions with assays and reporters to investigate DNA repair pathways, their impact on other DNA-templated processes and the specific contribution of the chromatin environment. In this review, we present these tools, discuss their pros and cons and illustrate their contribution to our current understanding of the DDR.
Collapse
Affiliation(s)
- Alexandra C Vítor
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Pablo Huertas
- Department of Genetics, University of Seville, Seville, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
43
|
Mooser C, Symeonidou IE, Leimbacher PA, Ribeiro A, Shorrocks AMK, Jungmichel S, Larsen SC, Knechtle K, Jasrotia A, Zurbriggen D, Jeanrenaud A, Leikauf C, Fink D, Nielsen ML, Blackford AN, Stucki M. Treacle controls the nucleolar response to rDNA breaks via TOPBP1 recruitment and ATR activation. Nat Commun 2020; 11:123. [PMID: 31913317 PMCID: PMC6949271 DOI: 10.1038/s41467-019-13981-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
Induction of DNA double-strand breaks (DSBs) in ribosomal DNA (rDNA) repeats is associated with ATM-dependent repression of ribosomal RNA synthesis and large-scale reorganization of nucleolar architecture, but the signaling events that regulate these responses are largely elusive. Here we show that the nucleolar response to rDNA breaks is dependent on both ATM and ATR activity. We further demonstrate that ATM- and NBS1-dependent recruitment of TOPBP1 in the nucleoli is required for inhibition of ribosomal RNA synthesis and nucleolar segregation in response to rDNA breaks. Mechanistically, TOPBP1 recruitment is mediated by phosphorylation-dependent interactions between three of its BRCT domains and conserved phosphorylated Ser/Thr residues at the C-terminus of the nucleolar phosphoprotein Treacle. Our data thus reveal an important cooperation between TOPBP1 and Treacle in the signaling cascade that triggers transcriptional inhibition and nucleolar segregation in response to rDNA breaks.
Collapse
Affiliation(s)
- Clémence Mooser
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Ioanna-Eleni Symeonidou
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Pia-Amata Leimbacher
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Alison Ribeiro
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Ann-Marie K Shorrocks
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stephanie Jungmichel
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Bledgamsvej 3B DK-2200, Copenhagen, Denmark
| | - Sara C Larsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Bledgamsvej 3B DK-2200, Copenhagen, Denmark
| | - Katja Knechtle
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Arti Jasrotia
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Diana Zurbriggen
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Alain Jeanrenaud
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Colin Leikauf
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Daniel Fink
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Bledgamsvej 3B DK-2200, Copenhagen, Denmark
| | - Andrew N Blackford
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952, Schlieren, Switzerland.
| |
Collapse
|
44
|
Siebenwirth C, Greubel C, Drexler GA, Reindl J, Walsh DWM, Schwarz B, Sammer M, Baur I, Pospiech H, Schmid TE, Dollinger G, Friedl AA. Local inhibition of rRNA transcription without nucleolar segregation after targeted ion irradiation of the nucleolus. J Cell Sci 2019; 132:jcs.232181. [PMID: 31492757 PMCID: PMC6803363 DOI: 10.1242/jcs.232181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Nucleoli have attracted interest for their role as cellular stress sensors and as potential targets for cancer treatment. The effect of DNA double-strand breaks (DSBs) in nucleoli on rRNA transcription and nucleolar organisation appears to depend on the agent used to introduce DSBs, DSB frequency and the presence (or not) of DSBs outside the nucleoli. To address the controversy, we targeted nucleoli with carbon ions at the ion microbeam SNAKE. Localized ion irradiation with 1-100 carbon ions per point (about 0.3-30 Gy per nucleus) did not lead to overall reduced ribonucleotide incorporation in the targeted nucleolus or other nucleoli of the same cell. However, both 5-ethynyluridine incorporation and Parp1 protein levels were locally decreased at the damaged nucleolar chromatin regions marked by γH2AX, suggesting localized inhibition of rRNA transcription. This locally restricted transcriptional inhibition was not accompanied by nucleolar segregation, a structural reorganisation observed after inhibition of rRNA transcription by treatment with actinomycin D or UV irradiation. The presented data indicate that even multiple complex DSBs do not lead to a pan-nucleolar response if they affect only a subnucleolar region.
Collapse
Affiliation(s)
- Christian Siebenwirth
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany .,Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany.,Department of Radiation Therapy and Radiooncology, Technical University of Munich, 81675 Munich, Germany
| | - Christoph Greubel
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Guido A Drexler
- Department of Radiation Oncology, University Hospital, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Judith Reindl
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Dietrich W M Walsh
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Benjamin Schwarz
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Matthias Sammer
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Iris Baur
- Department of Radiation Oncology, University Hospital, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Helmut Pospiech
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Thomas E Schmid
- Department of Radiation Therapy and Radiooncology, Technical University of Munich, 81675 Munich, Germany
| | - Günther Dollinger
- Institute for Applied Physics and Metrology, Universität der Bundeswehr München, 85577 Neubiberg, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| |
Collapse
|
45
|
Krenning L, van den Berg J, Medema RH. Life or Death after a Break: What Determines the Choice? Mol Cell 2019; 76:346-358. [PMID: 31561953 DOI: 10.1016/j.molcel.2019.08.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
DNA double-strand breaks (DSBs) pose a constant threat to genomic integrity. Such DSBs need to be repaired to preserve homeostasis at both the cellular and organismal levels. Hence, the DNA damage response (DDR) has evolved to repair these lesions and limit their toxicity. The initiation of DNA repair depends on the activation of the DDR, and we know that the strength of DDR signaling may differentially affect cellular viability. However, we do not fully understand what determines the cytotoxicity of a DSB. Recent work has identified genomic location, (in)correct DNA repair pathway usage, and cell-cycle position as contributors to DSB-induced cytotoxicity. In this review, we discuss how these determinants affect cytotoxicity, highlight recent discoveries, and identify open questions that could help to improve our understanding about cell fate decisions after a DNA DSB.
Collapse
Affiliation(s)
- Lenno Krenning
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
46
|
Imrichova T, Hubackova S, Kucerova A, Kosla J, Bartek J, Hodny Z, Vasicova P. Dynamic PML protein nucleolar associations with persistent DNA damage lesions in response to nucleolar stress and senescence-inducing stimuli. Aging (Albany NY) 2019; 11:7206-7235. [PMID: 31493766 PMCID: PMC6756913 DOI: 10.18632/aging.102248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 04/10/2023]
Abstract
Diverse stress insults trigger interactions of PML with nucleolus, however, the function of these PML nucleolar associations (PNAs) remains unclear. Here we show that during induction of DNA damage-induced senescence in human non-cancerous cells, PML accumulates at the nucleolar periphery simultaneously with inactivation of RNA polymerase I (RNAP I) and nucleolar segregation. Using time-lapse and high-resolution microscopy, we followed the genesis, structural transitions and destiny of PNAs to show that: 1) the dynamic structural changes of the PML-nucleolar interaction are tightly associated with inactivation and reactivation of RNAP I-mediated transcription, respectively; 2) the PML-nucleolar compartment develops sequentially under stress and, upon stress termination, it culminates in either of two fates: disappearance or persistence; 3) all PNAs stages can associate with DNA damage markers; 4) the persistent, commonly long-lasting PML multi-protein nucleolar structures (PML-NDS) associate with markers of DNA damage, indicating a role of PNAs in persistent DNA damage response characteristic for senescent cells. Given the emerging evidence implicating PML in homologous recombination-directed DNA repair, we propose that PNAs contribute to sequestration and faithful repair of the highly unstable ribosomal DNA repeats, a fundamental process to maintain a precise balance between DNA repair mechanisms, with implications for genomic integrity and aging.
Collapse
Affiliation(s)
- Terezie Imrichova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sona Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Present address: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Alena Kucerova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kosla
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
47
|
Korsholm LM, Gál Z, Lin L, Quevedo O, Ahmad DA, Dulina E, Luo Y, Bartek J, Larsen DH. Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair. Nucleic Acids Res 2019; 47:8019-8035. [PMID: 31184714 PMCID: PMC6735822 DOI: 10.1093/nar/gkz518] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11-RAD50-NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease.
Collapse
Affiliation(s)
- Lea M Korsholm
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Oliver Quevedo
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Diana A Ahmad
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Ekaterina Dulina
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, 266555 Qingdao, China
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology, Karolinska Institutet, SE-171 65 Solna, Sweden
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Genome Integrity Unit, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| |
Collapse
|
48
|
Marnef A, Finoux AL, Arnould C, Guillou E, Daburon V, Rocher V, Mangeat T, Mangeot PE, Ricci EP, Legube G. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes Dev 2019; 33:1175-1190. [PMID: 31395742 PMCID: PMC6719620 DOI: 10.1101/gad.324012.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/26/2019] [Indexed: 02/01/2023]
Abstract
The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. DNA double-strand breaks (DSBs) within rDNA induce both rDNA transcriptional repression and nucleolar segregation, but the link between the two events remains unclear. Here we found that DSBs induced on rDNA trigger transcriptional repression in a cohesin- and HUSH (human silencing hub) complex-dependent manner throughout the cell cycle. In S/G2 cells, transcriptional repression is further followed by extended resection within the interior of the nucleolus, DSB mobilization at the nucleolar periphery within nucleolar caps, and repair by homologous recombination. We showed that nuclear envelope invaginations frequently connect the nucleolus and that rDNA DSB mobilization, but not transcriptional repression, involves the nuclear envelope-associated LINC complex and the actin pathway. Altogether, our data indicate that rDNA break localization at the nucleolar periphery is not a direct consequence of transcriptional repression but rather is an active process that shares features with the mobilization of persistent DSB in active genes and heterochromatin.
Collapse
Affiliation(s)
- Aline Marnef
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Anne-Laure Finoux
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Coline Arnould
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Emmanuelle Guillou
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Virginie Daburon
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Vincent Rocher
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Thomas Mangeat
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| | - Philippe E Mangeot
- International Center for Infectiology Research (CIRI), Ecole Normale Supérieure de Lyon (ENS), U1111, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR5308, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1, Université Lyon, Lyon F-6900, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Ecole Normale Supérieure de Lyon (ENS), U1210, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR5239, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69007, France
| | - Gaëlle Legube
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse 31062, France
| |
Collapse
|
49
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
50
|
Correll CC, Bartek J, Dundr M. The Nucleolus: A Multiphase Condensate Balancing Ribosome Synthesis and Translational Capacity in Health, Aging and Ribosomopathies. Cells 2019; 8:cells8080869. [PMID: 31405125 PMCID: PMC6721831 DOI: 10.3390/cells8080869] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
The nucleolus is the largest membrane-less structure in the eukaryotic nucleus. It is involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and is the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the intricate pathophysiological relationship between the nucleolus and protein synthesis has only recently begun to emerge. Here, we provide perspective on new principles governing nucleolar formation and the resulting multiphase organization driven by liquid-liquid phase separation. With recent advances in the structural analysis of ribosome formation, we highlight the current understanding of the step-wise assembly of pre-ribosomal subunits and the quality control required for proper function. Finally, we address how aging affects ribosome genesis and how genetic defects in ribosome formation cause ribosomopathies, complex diseases with a predisposition to cancer.
Collapse
Affiliation(s)
- Carl C Correll
- Center for Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| | - Jiri Bartek
- Danish Cancer Society Research Center, Genome Integrity Unit, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Miroslav Dundr
- Center for Cancer Cell Biology Immunology and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|