1
|
Hong Y, Ye F, Gao X, Inman JT, Wang MD. Tunable Elliptical Cylinders for Rotational Mechanical Studies of Single DNA Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614944. [PMID: 39386461 PMCID: PMC11463624 DOI: 10.1101/2024.09.25.614944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The angular optical trap (AOT) is a powerful technique for measuring the DNA topology and rotational mechanics of fundamental biological processes. Realizing the full potential of the AOT requires rapid torsional control of these processes. However, existing AOT quartz cylinders are limited in their ability to meet the high rotation rate requirement while minimizing laser-induced photodamage. In this work, we present a novel trapping particle design to meet this challenge by creating small metamaterial elliptical cylinders with tunable trapping force and torque properties. The optical torque of these cylinders arises from their shape anisotropy, with their optical properties tuned via multilayered SiO2 and Si3N4 deposition. We demonstrate that these cylinders can be rotated at about 3 times the rate of quartz cylinders without slippage while enhancing the torque measurement resolution during DNA torsional elasticity studies. This approach opens new opportunities for previously inaccessible rotational studies of DNA processing.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fan Ye
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
D'Souza J, Hickson ID. Replication fork barriers to study site-specific DNA replication perturbation. DNA Repair (Amst) 2024; 141:103735. [PMID: 39079395 DOI: 10.1016/j.dnarep.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/18/2024]
Abstract
DNA replication ensures the complete and accurate duplication of the genome. The traditional approach to analysing perturbation of DNA replication is to use chemical inhibitors, such as hydroxyurea or aphidicolin, that slow or stall replication fork progression throughout the genome. An alternative approach is to perturb replication at a single site in the genome that permits a more forensic investigation of the cellular response to the stalling or disruption of a replication fork. This has been achieved in several organisms using different systems that share the common feature of utilizing the high affinity binding of a protein to a defined DNA sequence that is integrated into a specific locus in the host genome. Protein-mediated replication fork blocking systems of this sort have proven very valuable in defining how cells cope with encountering a barrier to fork progression. In this review, we compare protein-based replication fork barrier systems from different organisms that have been developed to generate site-specific replication fork perturbation.
Collapse
Affiliation(s)
- Jenevieve D'Souza
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark.
| |
Collapse
|
3
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
4
|
Pomp W, Meeussen JVW, Lenstra TL. Transcription factor exchange enables prolonged transcriptional bursts. Mol Cell 2024; 84:1036-1048.e9. [PMID: 38377994 PMCID: PMC10962226 DOI: 10.1016/j.molcel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Single-molecule imaging inside living cells has revealed that transcription factors (TFs) bind to DNA transiently, but a long-standing question is how this transient binding is related to transcription activation. Here, we devised a microscopy method to simultaneously measure transient TF binding at a single locus and the effect of these binding events on transcription. We show that DNA binding of the yeast TF Gal4 activates transcription of a target gene within a few seconds, with at least ∼20% efficiency and with a high initiation rate of ∼1 RNA/s. Gal4 DNA dissociation decreases transcription rapidly. Moreover, at a gene with multiple binding sites, individual Gal4 molecules only rarely stay bound throughout the entire burst but instead frequently exchange during a burst to increase the transcriptional burst duration. Our results suggest a mechanism for enhancer regulation in more complex eukaryotes, where TF cooperativity and exchange enable robust and responsive transcription regulation.
Collapse
Affiliation(s)
- Wim Pomp
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Joseph V W Meeussen
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Varon M, Dovrat D, Heuzé J, Tsirkas I, Singh SP, Pasero P, Galletto R, Aharoni A. Rrm3 and Pif1 division of labor during replication through leading and lagging strand G-quadruplex. Nucleic Acids Res 2024; 52:1753-1762. [PMID: 38117984 PMCID: PMC10899776 DOI: 10.1093/nar/gkad1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Members of the conserved Pif1 family of 5'-3' DNA helicases can unwind G4s and mitigate their negative impact on genome stability. In Saccharomyces cerevisiae, two Pif1 family members, Pif1 and Rrm3, contribute to the suppression of genomic instability at diverse regions including telomeres, centromeres and tRNA genes. While Pif1 can resolve lagging strand G4s in vivo, little is known regarding Rrm3 function at G4s and its cooperation with Pif1 for G4 replication. Here, we monitored replication through G4 sequences in real time to show that Rrm3 is essential for efficient replisome progression through G4s located on the leading strand template, but not on the lagging strand. We found that Rrm3 importance for replication through G4s is dependent on its catalytic activity and its N-terminal unstructured region. Overall, we show that Rrm3 and Pif1 exhibit a division of labor that enables robust replication fork progression through leading and lagging strand G4s, respectively.
Collapse
Affiliation(s)
- Mor Varon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Jonathan Heuzé
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier, France
| | - Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier, France
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
6
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
7
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
8
|
Meeussen JVW, Pomp W, Brouwer I, de Jonge WJ, Patel HP, Lenstra TL. Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Res 2023; 51:5449-5468. [PMID: 36987884 PMCID: PMC10287935 DOI: 10.1093/nar/gkad227] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Many transcription factors (TFs) localize in nuclear clusters of locally increased concentrations, but how TF clustering is regulated and how it influences gene expression is not well understood. Here, we use quantitative microscopy in living cells to study the regulation and function of clustering of the budding yeast TF Gal4 in its endogenous context. Our results show that Gal4 forms clusters that overlap with the GAL loci. Cluster number, density and size are regulated in different growth conditions by the Gal4-inhibitor Gal80 and Gal4 concentration. Gal4 truncation mutants reveal that Gal4 clustering is facilitated by, but does not completely depend on DNA binding and intrinsically disordered regions. Moreover, we discover that clustering acts as a double-edged sword: self-interactions aid TF recruitment to target genes, but recruited Gal4 molecules that are not DNA-bound do not contribute to, and may even inhibit, transcription activation. We propose that cells need to balance the different effects of TF clustering on target search and transcription activation to facilitate proper gene expression.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
9
|
Lu S, Hou Y, Zhang XE, Gao Y. Live cell imaging of DNA and RNA with fluorescent signal amplification and background reduction techniques. Front Cell Dev Biol 2023; 11:1216232. [PMID: 37342234 PMCID: PMC10277805 DOI: 10.3389/fcell.2023.1216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Illuminating DNA and RNA dynamics in live cell can elucidate their life cycle and related biochemical activities. Various protocols have been developed for labeling the regions of interest in DNA and RNA molecules with different types of fluorescent probes. For example, CRISPR-based techniques have been extensively used for imaging genomic loci. However, some DNA and RNA molecules can still be difficult to tag and observe dynamically, such as genomic loci in non-repetitive regions. In this review, we will discuss the toolbox of techniques and methodologies that have been developed for imaging DNA and RNA. We will also introduce optimized systems that provide enhanced signal intensity or low background fluorescence for those difficult-to-tag molecules. These strategies can provide new insights for researchers when designing and using techniques to visualize DNA or RNA molecules.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yu Hou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
10
|
Wang G, Vasquez KM. Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 2023; 24:211-234. [PMID: 36316397 DOI: 10.1038/s41576-022-00539-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
11
|
Gotoh E. Visualizing Active Replication Regions in S-Phase Chromosomes. Methods Mol Biol 2023; 2519:117-126. [PMID: 36066717 DOI: 10.1007/978-1-0716-2433-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A basic question of cell biology is how DNA folds to chromosome. A number of recently accumulated evidences have suggested that folding of chromosome proceeds tightly coupled with DNA replication progresses. Drug-induced PCC is a useful tool for visualization of the interphase nuclei, in particular, S-phase, as S-phase prematurely condensed chromosomes (S-phase PCC). Active replicating DNA is labeled directly with Cy3-dUTP by bead loading method, and then S-phase nuclei is immediately condensed prematurely by calyculin A to obtain S-phase PCC. Active replicating regions on S-PCC are observed under a scanning confocal microscope. Cy3-dUTP-labeled S-phase PCCs clearly reveal the drastic transitional change of chromosome formation through S-phase, starting from a "cloudy nebula" to numerous numbers of "beads on a string" and finally to "striped arrays of banding structured chromosome" known as G- or R-banding pattern. The number, distribution, and shape of replication foci were also measured in individual subphase of S-phase; maximally ~1400 foci of 0.35 μm average radius size were scored at the beginning of S-phase, and the number is reduced to ~100 at the end of S-phase. Drug-induced PCC clearly provided the new insight that eukaryote DNA replication is tightly coupled with the chromosome condensation/compaction for construction of eukaryote higher-ordered chromosome structure.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Division of Diagnostic Imaging, Department of Radiology, Japan Labour Health and Safety Organization, Tokyo Rosai Hospital, Ohta-ku, Tokyo, Japan.
| |
Collapse
|
12
|
Tsirkas I, Zur T, Dovrat D, Cohen A, Ravkaie L, Aharoni A. Protein fluorescent labeling in live yeast cells using scFv-based probes. CELL REPORTS METHODS 2022; 2:100357. [PMID: 36590693 PMCID: PMC9795370 DOI: 10.1016/j.crmeth.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The fusion of fluorescent proteins (FPs) to endogenous proteins is a widespread approach for microscopic examination of protein function, expression, and localization in the cell. However, proteins that are sensitive to FP fusion or expressed at low levels are difficult to monitor using this approach. Here, we develop a single-chain fragment variable (scFv)-FP approach to efficiently label Saccharomyces cerevisiae proteins that are tagged with repeats of hemagglutinin (HA)-tag sequences. We demonstrate the successful labeling of DNA-binding proteins and proteins localized to different cellular organelles including the nuclear membrane, peroxisome, Golgi apparatus, and mitochondria. This approach can lead to a significant increase in fluorescence intensity of the labeled protein, allows C'-terminal labeling of difficult-to-tag proteins and increased detection sensitivity of DNA-damage foci. Overall, the development of a scFv-FP labeling approach in yeast provides a general and simple tool for the function and localization analysis of the yeast proteome.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Tomer Zur
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amit Cohen
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Lior Ravkaie
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
13
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
14
|
Tsirkas I, Dovrat D, Thangaraj M, Brouwer I, Cohen A, Paleiov Z, Meijler MM, Lenstra T, Aharoni A. Transcription-replication coordination revealed in single live cells. Nucleic Acids Res 2022; 50:2143-2156. [PMID: 35137218 PMCID: PMC8887460 DOI: 10.1093/nar/gkac069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
The coexistence of DNA replication and transcription during S-phase requires their tight coordination to prevent harmful conflicts. While extensive research revealed important mechanisms for minimizing these conflicts and their consequences, little is known regarding how the replication and transcription machinery are coordinated in real-time. Here, we developed a live-cell imaging approach for the real-time monitoring of replisome progression and transcription dynamics during a transcription-replication encounter. We found a wave of partial transcriptional repression ahead of the moving replication fork, which may contribute to efficient fork progression through the transcribed gene. Real-time detection of conflicts revealed their negative impact on both processes, leading to fork stalling or slowdown as well as lower transcription levels during gene replication, with different trade-offs observed in defined subpopulations of cells. Our real-time measurements of transcription-replication encounters demonstrate how these processes can proceed simultaneously while maintaining genomic stability, and how conflicts can arise when coordination is impaired.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Manikandan Thangaraj
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute,1066CX Amsterdam, The Netherlands
| | - Amit Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Zohar Paleiov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Michael M Meijler
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Tineke Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute,1066CX Amsterdam, The Netherlands
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
15
|
Abstract
DNA can adopt non-B form structures that create significant blocks to DNA synthesis and seeking understanding of the mechanisms cells use to resolve such impediments continues to be a very active area of research. However, the ability to monitor the stalling of DNA synthesis at specific sites in the genome in living cells, of central importance to elucidating these mechanisms, poses a significant technical challenge. Replisome stalling is often transient with only a small fraction of events leading to detectable genetic changes, making traditional reporter assays insensitive to the stalling event per se. On the other hand, the imprint stalling leaves on the epigenome can be exploited as a form of biological 'tape recorder' that captures episodes of fork stalling as heritable changes in histone modifications and in transcription. Here we describe a detailed protocol for monitoring DNA structure-dependent epigenetic instability of the BU-1 locus in the avian cell line DT40, which has proved a sensitive tool for understanding the mechanisms by which structured DNA is replicated in a vertebrate system.
Collapse
Affiliation(s)
- Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Nair RR, Zabezhinsky D, Gelin-Licht R, Haas BJ, Dyhr MC, Sperber HS, Nusbaum C, Gerst JE. Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology. eLife 2021; 10:66050. [PMID: 33942720 PMCID: PMC8137142 DOI: 10.7554/elife.66050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/02/2021] [Indexed: 02/02/2023] Open
Abstract
Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete messenger ribonucleoprotein (mRNP) complexes (called transperons). Chromatin capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact; thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4, and its depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.
Collapse
Affiliation(s)
- Rohini R Nair
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dmitry Zabezhinsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Gelin-Licht
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Brian J Haas
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Michael Ca Dyhr
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hannah S Sperber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Tsirkas I, Dovrat D, Lei Y, Kalyva A, Lotysh D, Li Q, Aharoni A. Cac1 WHD and PIP domains have distinct roles in replisome progression and genomic stability. Curr Genet 2020; 67:129-139. [PMID: 33025160 DOI: 10.1007/s00294-020-01113-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
Replication-coupled (RC) nucleosome assembly is an essential process in eukaryotic cells to maintain chromatin structure during DNA replication. The deposition of newly-synthesized H3/H4 histones during DNA replication is facilitated by specialized histone chaperones. CAF-1 is an important histone chaperone complex and its main subunit, Cac1p, contains a PIP and WHD domain for interaction with PCNA and the DNA, respectively. While Cac1p subunit was extensively studied in different systems much less is known regarding the importance of the PIP and WHD domains in replication fork progression and genome stability. By exploiting a time-lapse microscopy system for monitoring DNA replication in individual live cells, we examined how mutations in these Cac1p domains affect replication fork progression and post-replication characteristics. Our experiments revealed that mutations in the Cac1p WHD domain, which abolished the CAF-1-DNA interaction, slows down replication fork progression. In contrast, mutations in Cac1p PIP domain, abolishing Cac1p-PCNA interaction, lead to extended late-S/Anaphase duration, elevated number of RPA foci and increased spontaneous mutation rate. Our research shows that Cac1p WHD and PIP domains have distinct roles in high replisome progression and maintaining genome stability during cell cycle progression.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Yang Lei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Angeliki Kalyva
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Diana Lotysh
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel.
| |
Collapse
|
18
|
Le TT, Gao X, Park SH, Lee J, Inman JT, Lee JH, Killian JL, Badman RP, Berger JM, Wang MD. Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity. Cell 2020; 179:619-631.e15. [PMID: 31626768 PMCID: PMC6899335 DOI: 10.1016/j.cell.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
Abstract
DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica L Killian
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Ryan P Badman
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Sato H, Das S, Singer RH, Vera M. Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annu Rev Biochem 2020; 89:159-187. [PMID: 32176523 DOI: 10.1146/annurev-biochem-011520-104955] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , ,
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , ,
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , , .,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Maria Vera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , , .,Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada;
| |
Collapse
|
20
|
Dahan D, Tsirkas I, Dovrat D, Sparks MA, Singh SP, Galletto R, Aharoni A. Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Res 2019; 46:11847-11857. [PMID: 30395308 PMCID: PMC6294490 DOI: 10.1093/nar/gky1065] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Pif1 DNA helicase is a potent unwinder of G-quadruplex (G4) structures in vitro and functions to maintain genome stability at G4 sequences in Saccharomyces cerevisiae. Here, we developed and utilized a live-cell imaging approach to quantitatively measure the progression rates of single replication forks through different G4 containing sequences in individual yeast cells. We show that in the absence of Pif1, replication rates through specific lagging strand G4 sequences in vivo is significantly decreased. In contrast, we found that in the absence of Pif1, replication rates through the same G4s on the leading strand are not decreased relative to the respective WT strains, showing that Pif1 is essential only for efficient replication through lagging strand G4s. Additionally, we show that a canonical PIP sequence in Pif1 interacts with PCNA and that replication through G4 structures is significantly slower in the absence of this interaction in vitro and in vivo. Thus, Pif1–PCNA interaction is essential for optimal replisome progression through G4 sequences, highlighting the importance of coupling between Pif1 activity and replisome progression during yeast genome replication.
Collapse
Affiliation(s)
- Danielle Dahan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
21
|
Duriez B, Chilaka S, Bercher JF, Hercul E, Prioleau MN. Replication dynamics of individual loci in single living cells reveal changes in the degree of replication stochasticity through S phase. Nucleic Acids Res 2019; 47:5155-5169. [PMID: 30926993 PMCID: PMC6547449 DOI: 10.1093/nar/gkz220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are replicated under the control of a highly sophisticated program during the restricted time period corresponding to S phase. The most widely used replication timing assays, which are performed on populations of millions of cells, suggest that most of the genome is synchronously replicated on homologous chromosomes. We investigated the stochastic nature of this temporal program, by comparing the precise replication times of allelic loci within single vertebrate cells progressing through S phase at six loci replicated from very early to very late. We show that replication timing is strictly controlled for the three loci replicated in the first half of S phase. Out of the three loci replicated in the second part of S phase, two present a significantly more stochastic pattern. Surprisingly, we find that the locus replicated at the very end of S phase, presents stochasticity similar to those replicated in early S phase. We suggest that the richness of loci in efficient origins of replication, which decreases from early- to late-replicating regions, and the strength of interaction with the nuclear lamina may underlie the variation of timing control during S phase.
Collapse
Affiliation(s)
- Bénédicte Duriez
- Domaines Chromatiniens et Réplication, Institut Jacques Monod, UMR7592 CNRS – Université Paris Diderot, Paris, France, Equipe labellisée ARC
| | - Sabarinadh Chilaka
- Domaines Chromatiniens et Réplication, Institut Jacques Monod, UMR7592 CNRS – Université Paris Diderot, Paris, France, Equipe labellisée ARC
| | | | - Eslande Hercul
- Domaines Chromatiniens et Réplication, Institut Jacques Monod, UMR7592 CNRS – Université Paris Diderot, Paris, France, Equipe labellisée ARC
| | - Marie-Noëlle Prioleau
- Domaines Chromatiniens et Réplication, Institut Jacques Monod, UMR7592 CNRS – Université Paris Diderot, Paris, France, Equipe labellisée ARC
| |
Collapse
|
22
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|
23
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|