1
|
Damayanti RH, Rusdiana T, Wathoni N. Mesenchymal Stem Cell Secretome for Dermatology Application: A Review. Clin Cosmet Investig Dermatol 2021; 14:1401-1412. [PMID: 34675575 PMCID: PMC8502696 DOI: 10.2147/ccid.s331044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
Secretome, also known as conditioned medium, is a secreted molecule from mesenchymal stem cells (MSCs) that has a variety of biological activities that can be used in various therapies, especially on the skin applications. A lack of conventional therapies makes secretome as a promising alternative therapy. The presence of growth factors, cytokines, and extracellular vesicles including microvesicles and exosomes in secretome has been widely reported, which serves in improving the proliferation and migration of cells to help in skin regeneration. Therefore, we were able to optimize the use of this secretome in a well-needed special review related to its work in addressing various skin problems. So, in this article, we discussed the benefits and biological activity of secretome on the skin application. This review was compiled based on the approval of several sites, such as Scopus, PubMed, Science Direct, and Google Scholar with the terms "MSC secretome for skin," "secretome for skin," "secretome dermatology," "secretome conditioned medium for skin," "secretome conditioned medium for skin wound," "secretome conditioned medium for aging," "secretome conditioned medium for hair growth," and "secretome conditioned medium for psoriasis." A total of 215 articles were collected for selection, of which 90 articles were used. Based on the results, it was concluded that secretome has a variety of useful activities to regenerate and repair tissue damage that have not been used on the skin, such as for wound healing, photoprotection, promotion of hair growth, psoriasis treatment, and other application as antimicrobial.
Collapse
Affiliation(s)
- Restu Harisma Damayanti
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45353, Indonesia
| |
Collapse
|
2
|
Cooper TT, Sherman SE, Bell GI, Dayarathna T, McRae DM, Ma J, Lagugné-Labarthet F, Pasternak SH, Lajoie GA, Hess DA. Ultrafiltration and Injection of Islet Regenerative Stimuli Secreted by Pancreatic Mesenchymal Stromal Cells. Stem Cells Dev 2021; 30:247-264. [PMID: 33403929 PMCID: PMC10331161 DOI: 10.1089/scd.2020.0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The secretome of mesenchymal stromal cells (MSCs) is enriched for biotherapeutic effectors contained within and independent of extracellular vesicles (EVs) that may support tissue regeneration as an injectable agent. We have demonstrated that the intrapancreatic injection of concentrated conditioned media (CM) produced by bone marrow MSC supports islet regeneration and restored glycemic control in hyperglycemic mice, ultimately providing a platform to elucidate components of the MSC secretome. Herein, we extend these findings using human pancreas-derived MSC (Panc-MSC) as "biofactories" to enrich for tissue regenerative stimuli housed within distinct compartments of the secretome. Specifically, we utilized 100 kDa ultrafiltration as a simple method to debulk protein mass and to enrich for EVs while concentrating the MSC secretome into an injectable volume for preclinical assessments in murine models of blood vessel and islet regeneration. EV enrichment (EV+) was validated using nanoscale flow cytometry and atomic force microscopy, in addition to the detection of classical EV markers CD9, CD81, and CD63 using label-free mass spectrometry. EV+ CM was predominately enriched with mediators of wound healing and epithelial-to-mesenchymal transition that supported functional regeneration in mesenchymal and nonmesenchymal tissues. For example, EV+ CM supported human microvascular endothelial cell tubule formation in vitro and enhanced the recovery of blood perfusion following intramuscular injection in nonobese diabetic/severe combined immunodeficiency mice with unilateral hind limb ischemia. Furthermore, EV+ CM increased islet number and β cell mass, elevated circulating insulin, and improved glycemic control following intrapancreatic injection in streptozotocin-treated mice. Collectively, this study provides foundational evidence that Panc-MSC, readily propagated from the subculture of human islets, may be utilized for regenerative medicine applications.
Collapse
Affiliation(s)
- Tyler T. Cooper
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - Stephen E. Sherman
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gillian I. Bell
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Thamara Dayarathna
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | | | - Jun Ma
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | | | - Stephen H. Pasternak
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| |
Collapse
|
3
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
4
|
Tang SW, Tong WY, Pang SW, Voelcker NH, Lam YW. Deconstructing, Replicating, and Engineering Tissue Microenvironment for Stem Cell Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:540-554. [PMID: 32242476 DOI: 10.1089/ten.teb.2020.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most crucial components of regenerative medicine is the controlled differentiation of embryonic or adult stem cells into the desired cell lineage. Although most of the reported protocols of stem cell differentiation involve the use of soluble growth factors, it is increasingly evident that stem cells also undergo differentiation when cultured in the appropriate microenvironment. When cultured in decellularized tissues, for instance, stem cells can recapitulate the morphogenesis and functional specialization of differentiated cell types with speed and efficiency that often surpass the traditional growth factor-driven protocols. This suggests that the tissue microenvironment (TME) provides stem cells with a holistic "instructive niche" that harbors signals for cellular reprogramming. The translation of this into medical applications requires the decoding of these signals, but this has been hampered by the complexity of TME. This problem is often addressed by a reductionist approach, in which cells are exposed to substrates decorated with simple, empirically designed geometries, textures, and chemical compositions ("bottom-up" approach). Although these studies are invaluable in revealing the basic principles of mechanotransduction mechanisms, their physiological relevance is often uncertain. This review examines the recent progress of an alternative, "top-down" approach, in which the TME is treated as a holistic biological entity. This approach is made possible by recent advances in systems biology and fabrication technologies that enable the isolation, characterization, and reconstitution of TME. It is hoped that these new techniques will elucidate the nature of niche signals so that they can be extracted, replicated, and controlled. This review summarizes these emerging techniques and how the data they generated are changing our view on TME. Impact statement This review summarizes the current state of art of the understanding of instructive niche in the field of tissue microenvironment. Not only did we survey the use of different biochemical preparations as stimuli of stem cell differentiation and summarize the recent effort in dissecting the biochemical composition of these preparations, through the application of extracellular matrix (ECM) arrays and proteomics, but we also introduce the use of open-source, high-content immunohistochemistry projects in contributing to the understanding of tissue-specific composition of ECM. We believe this review would be highly useful for our peer researching in the same field. "Mr. Tulkinghorn is always the same… so oddly out of place and yet so perfectly at home." -Charles Dickens, Bleak House.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| | - Wing Yin Tong
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
5
|
Cooper TT, Sherman SE, Bell GI, Ma J, Kuljanin M, Jose SE, Lajoie GA, Hess DA. Characterization of a Vimentin high /Nestin high proteome and tissue regenerative secretome generated by human pancreas-derived mesenchymal stromal cells. Stem Cells 2020; 38:666-682. [PMID: 31904137 DOI: 10.1002/stem.3143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Multipotent/mesenchymal stromal cells (MSCs) exist within a variety of postnatal tissues; however, global proteomic analyses comparing tissue-specific MSC are limited. Using human bone marrow (BM)-derived MSCs as a gold standard, we used label-free mass spectrometry and functional assays to characterize the proteome, secretome, and corresponding function of human pancreas-derived MSCs (Panc-MSCs) with a classical phenotype (CD90+/CD73+/CD105+/CD45-/CD31-). Both MSC subtypes expressed mesenchymal markers vimentin, α-SMA, and STRO-1; however, expression of nestin was increased in Panc-MSCs. Accordingly, these Vimentinhigh /Nestinhigh cells were isolated from fresh human pancreatic islet and non-islet tissues. Next, we identified expression of >60 CD markers shared between Panc-MSCs and BM-MSCs, including validated expression of CD14. An additional 19 CD markers were differentially expressed, including reduced pericyte-marker CD146 expression on Panc-MSCs. Panc-MSCs also showed reduced expression of proteins involved in lipid and retinoid metabolism. Accordingly, Panc-MSCs showed restricted responses to adipogenic stimuli in vitro, although both MSC types demonstrated trilineage differentiation. In contrast, Panc-MSCs demonstrated accelerated growth kinetics and competency to pro-neurogenic stimuli in vitro. The secretome of Panc-MSCs was highly enriched for proteins associated with vascular development, wound healing and chemotaxis. Similar to BM-MSCs, Panc-MSCs conditioned media augmented endothelial cell survival, proliferation, and tubule formation in vitro. Importantly, the secretome of both MSC types was capable of stimulating chemotactic infiltration of murine endothelial cells in vivo and reduced hyperglycemia in STZ-treated mice following intrapancreatic injection. Overall, this study provides foundational knowledge to develop Panc-MSCs as a unique MSC subtype with functional properties beneficial in regenerative medicine for diabetes and vascular disease.
Collapse
Affiliation(s)
- Tyler T Cooper
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Stephen E Sherman
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Gillian I Bell
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Jun Ma
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Miljan Kuljanin
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Shauna E Jose
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|