1
|
Kristensen SS, Kesgin K, Jörntell H. High-dimensional cortical signals reveal rich bimodal and working memory-like representations among S1 neuron populations. Commun Biol 2024; 7:1043. [PMID: 39179675 PMCID: PMC11344095 DOI: 10.1038/s42003-024-06743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Complexity is important for flexibility of natural behavior and for the remarkably efficient learning of the brain. Here we assessed the signal complexity among neuron populations in somatosensory cortex (S1). To maximize our chances of capturing population-level signal complexity, we used highly repeatable resolvable visual, tactile, and visuo-tactile inputs and neuronal unit activity recorded at high temporal resolution. We found the state space of the spontaneous activity to be extremely high-dimensional in S1 populations. Their processing of tactile inputs was profoundly modulated by visual inputs and even fine nuances of visual input patterns were separated. Moreover, the dynamic activity states of the S1 neuron population signaled the preceding specific input long after the stimulation had terminated, i.e., resident information that could be a substrate for a working memory. Hence, the recorded high-dimensional representations carried rich multimodal and internal working memory-like signals supporting high complexity in cortical circuitry operation.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Kaan Kesgin
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Wei Y, Marshall AG, McGlone FP, Makdani A, Zhu Y, Yan L, Ren L, Wei G. Human tactile sensing and sensorimotor mechanism: from afferent tactile signals to efferent motor control. Nat Commun 2024; 15:6857. [PMID: 39127772 PMCID: PMC11316806 DOI: 10.1038/s41467-024-50616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
In tactile sensing, decoding the journey from afferent tactile signals to efferent motor commands is a significant challenge primarily due to the difficulty in capturing population-level afferent nerve signals during active touch. This study integrates a finite element hand model with a neural dynamic model by using microneurography data to predict neural responses based on contact biomechanics and membrane transduction dynamics. This research focuses specifically on tactile sensation and its direct translation into motor actions. Evaluations of muscle synergy during in -vivo experiments revealed transduction functions linking tactile signals and muscle activation. These functions suggest similar sensorimotor strategies for grasping influenced by object size and weight. The decoded transduction mechanism was validated by restoring human-like sensorimotor performance on a tendon-driven biomimetic hand. This research advances our understanding of translating tactile sensation into motor actions, offering valuable insights into prosthetic design, robotics, and the development of next-generation prosthetics with neuromorphic tactile feedback.
Collapse
Affiliation(s)
- Yuyang Wei
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Andrew G Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Francis P McGlone
- Department of Neuroscience and Biomedical Engineering, Aalto University, Otakaari 24, Helsinki, Finland
| | - Adarsh Makdani
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 5UX, UK
| | - Yiming Zhu
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Lingyun Yan
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Lei Ren
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Jilin, China.
| | - Guowu Wei
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
3
|
Kristensen SS, Jörntell H. Local field potential sharp waves with diversified impact on cortical neuronal encoding of haptic input. Sci Rep 2024; 14:15243. [PMID: 38956102 PMCID: PMC11219916 DOI: 10.1038/s41598-024-65200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Cortical sensory processing is greatly impacted by internally generated activity. But controlling for that activity is difficult since the thalamocortical network is a high-dimensional system with rapid state changes. Therefore, to unwind the cortical computational architecture there is a need for physiological 'landmarks' that can be used as frames of reference for computational state. Here we use a waveshape transform method to identify conspicuous local field potential sharp waves (LFP-SPWs) in the somatosensory cortex (S1). LFP-SPW events triggered short-lasting but massive neuronal activation in all recorded neurons with a subset of neurons initiating their activation up to 20 ms before the LFP-SPW onset. In contrast, LFP-SPWs differentially impacted the neuronal spike responses to ensuing tactile inputs, depressing the tactile responses in some neurons and enhancing them in others. When LFP-SPWs coactivated with more distant cortical surface (ECoG)-SPWs, suggesting an involvement of these SPWs in global cortical signaling, the impact of the LFP-SPW on the neuronal tactile response could change substantially, including inverting its impact to the opposite. These cortical SPWs shared many signal fingerprint characteristics as reported for hippocampal SPWs and may be a biomarker for a particular type of state change that is possibly shared byboth hippocampus and neocortex.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Mellbin A, Rongala U, Jörntell H, Bengtsson F. ECoG activity distribution patterns detects global cortical responses following weak tactile inputs. iScience 2024; 27:109338. [PMID: 38495818 PMCID: PMC10940986 DOI: 10.1016/j.isci.2024.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Many studies have suggested that the neocortex operates as a global network of functionally interconnected neurons, indicating that any sensory input could shift activity distributions across the whole brain. A tool assessing the activity distribution across cortical regions with high temporal resolution could then potentially detect subtle changes that may pass unnoticed in regionalized analyses. We used eight-channel, distributed electrocorticogram (ECoG) recordings to analyze changes in global activity distribution caused by single pulse electrical stimulations of the paw. We analyzed the temporally evolving patterns of the activity distributions using principal component analysis (PCA). We found that the localized tactile stimulation caused clearly measurable changes in global ECoG activity distribution. These changes in signal activity distribution patterns were detectable across a small number of ECoG channels, even when excluding the somatosensory cortex, suggesting that the method has high sensitivity, potentially making it applicable to human electroencephalography (EEG) for detection of pathological changes.
Collapse
Affiliation(s)
- Astrid Mellbin
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden
| | - Udaya Rongala
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden
| | - Fredrik Bengtsson
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
5
|
Chen Q, Dong Y, Gai Y. Tactile Location Perception Encoded by Gamma-Band Power. Bioengineering (Basel) 2024; 11:377. [PMID: 38671798 PMCID: PMC11048554 DOI: 10.3390/bioengineering11040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The perception of tactile-stimulation locations is an important function of the human somatosensory system during body movements and its interactions with the surroundings. Previous psychophysical and neurophysiological studies have focused on spatial location perception of the upper body. In this study, we recorded single-trial electroencephalography (EEG) responses evoked by four vibrotactile stimulators placed on the buttocks and thighs while the human subject was sitting in a chair with a cushion. METHODS Briefly, 14 human subjects were instructed to sit in a chair for a duration of 1 h or 1 h and 45 min. Two types of cushions were tested with each subject: a foam cushion and an air-cell-based cushion dedicated for wheelchair users to alleviate tissue stress. Vibrotactile stimulations were applied to the sitting interface at the beginning and end of the sitting period. Somatosensory-evoked potentials were obtained using a 32-channel EEG. An artificial neural net was used to predict the tactile locations based on the evoked EEG power. RESULTS We found that single-trial beta (13-30 Hz) and gamma (30-50 Hz) waves can best predict the tactor locations with an accuracy of up to 65%. Female subjects showed the highest performances, while males' sensitivity tended to degrade after the sitting period. A three-way ANOVA analysis indicated that the air-cell cushion maintained location sensitivity better than the foam cushion. CONCLUSION Our finding shows that tactile location information is encoded in EEG responses and provides insights on the fundamental mechanisms of the tactile system, as well as applications in brain-computer interfaces that rely on tactile stimulation.
Collapse
Affiliation(s)
| | | | - Yan Gai
- Biomedical Engineering, School of Science and Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA; (Q.C.); (Y.D.)
| |
Collapse
|
6
|
Liang X, Lin J, Zhou P, Fu W, Xu N, Liu J. Toe stimulation improves tactile perception of the genitals. Cereb Cortex 2024; 34:bhae054. [PMID: 38367614 DOI: 10.1093/cercor/bhae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
The human body is represented in a topographic pattern in the primary somatosensory cortex (S1), and genital representation is displaced below the toe representation. However, the relationship between the representation of the genitals and toe in S1 remains unclear. In this study, tactile stimulation was applied to the big toe in healthy subjects to observe changes in tactile acuity in the unstimulated genital area, abdomen, and metacarpal dorsal. Then tactile stimulation was applied to the right abdomen and metacarpal dorsal to observe changes in tactile acuity in bilateral genitals. The results revealed that tactile stimulation of the big toe led to a reduction in the 2-point discrimination threshold (2PDT) not only in the stimulated big toe but also in the bilateral unstimulated genitals, whereas the bilateral abdomen and metacarpal dorsal threshold remained unchanged. On the other hand, tactile stimulation of the abdomen and metacarpal dorsal did not elicit 2-point discrimination threshold changes in the bilateral genitals. Cortical and subcortical mechanisms have been proposed to account for the findings. One explanation involves the intracortical interaction between 2 adjacent representations. Another possible explanation is that the information content of a specific body part is broadly distributed across the S1. Moreover, exploring the links between human behaviors and changes in the cerebral cortex is of significant importance.
Collapse
Affiliation(s)
- Xuesong Liang
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Acupuncture, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518133, China
| | - Jiahui Lin
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518133, China
| | - Wenbin Fu
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Nenggui Xu
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianhua Liu
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
7
|
Etemadi L, Enander JM, Jörntell H. Hippocampal output profoundly impacts the interpretation of tactile input patterns in SI cortical neurons. iScience 2023; 26:106885. [PMID: 37260754 PMCID: PMC10227419 DOI: 10.1016/j.isci.2023.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/13/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Due to continuous state variations in neocortical circuits, individual somatosensory cortex (SI) neurons in vivo display a variety of intracellular responses to the exact same spatiotemporal tactile input pattern. To manipulate the internal cortical state, we here used brief electrical stimulation of the output region of the hippocampus, which preceded the delivery of specific tactile afferent input patterns to digit 2 of the anesthetized rat. We find that hippocampal output had a diversified, remarkably strong impact on the intracellular response types displayed by each neuron in the primary SI to each given tactile input pattern. Qualitatively, this impact was comparable to that previously described for cortical output, which was surprising given the widely assumed specific roles of the hippocampus, such as in cortical memory formation. The findings show that hippocampal output can profoundly impact the state-dependent interpretation of tactile inputs and hence influence perception, potentially with affective and semantic components.
Collapse
Affiliation(s)
- Leila Etemadi
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas M.D. Enander
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Rosenthal IA, Bashford L, Kellis S, Pejsa K, Lee B, Liu C, Andersen RA. S1 represents multisensory contexts and somatotopic locations within and outside the bounds of the cortical homunculus. Cell Rep 2023; 42:112312. [PMID: 37002922 PMCID: PMC10544688 DOI: 10.1016/j.celrep.2023.112312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Recent literature suggests that tactile events are represented in the primary somatosensory cortex (S1) beyond its long-established topography; in addition, the extent to which S1 is modulated by vision remains unclear. To better characterize S1, human electrophysiological data were recorded during touches to the forearm or finger. Conditions included visually observed physical touches, physical touches without vision, and visual touches without physical contact. Two major findings emerge from this dataset. First, vision strongly modulates S1 area 1, but only if there is a physical element to the touch, suggesting that passive touch observation is insufficient to elicit neural responses. Second, despite recording in a putative arm area of S1, neural activity represents both arm and finger stimuli during physical touches. Arm touches are encoded more strongly and specifically, supporting the idea that S1 encodes tactile events primarily through its topographic organization but also more generally, encompassing other areas of the body.
Collapse
Affiliation(s)
- Isabelle A Rosenthal
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Luke Bashford
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer Kellis
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Kelsie Pejsa
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Lee
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Liu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
10
|
Etemadi L, Enander JMD, Jörntell H. Remote cortical perturbation dynamically changes the network solutions to given tactile inputs in neocortical neurons. iScience 2022; 25:103557. [PMID: 34977509 PMCID: PMC8689199 DOI: 10.1016/j.isci.2021.103557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex has a globally encompassing network structure, which for each given input constrains the possible combinations of neuronal activations across it. Hence, its network contains solutions. But in addition, the cortex has an ever-changing multidimensional internal state, causing each given input to result in a wide range of specific neuronal activations. Here we use intracellular recordings in somatosensory cortex (SI) neurons of anesthetized rats to show that remote, subthreshold intracortical electrical perturbation can impact such constraints on the responses to a set of spatiotemporal tactile input patterns. Whereas each given input pattern normally induces a wide set of preferred response states, when combined with cortical perturbation response states that did not otherwise occur were induced and consequently made other response states less likely. The findings indicate that the physiological network structure can dynamically change as the state of any given cortical region changes, thereby enabling a rich, multifactorial, perceptual capability. Tactile sensory input patterns evoke multi-structure cortical neuron responses Multi-structure responses are shown to be impacted by remote cortical regions Highly dynamic neuron responses reflects global cortical information integration Perception hence depends on globally distributed activity at the time of input
Collapse
Affiliation(s)
- Leila Etemadi
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, BMC F10 Tornavägen 10, 221 84 Lund, Sweden
| | - Jonas M D Enander
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, BMC F10 Tornavägen 10, 221 84 Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, BMC F10 Tornavägen 10, 221 84 Lund, Sweden
| |
Collapse
|
11
|
Cortical responses to touch reflect subcortical integration of LTMR signals. Nature 2021; 600:680-685. [PMID: 34789880 PMCID: PMC9289451 DOI: 10.1038/s41586-021-04094-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/04/2021] [Indexed: 12/03/2022]
Abstract
Current models to explain how signals emanating from cutaneous mechanoreceptors generate representations of touch are based on comparisons of the tactile responses of mechanoreceptor subtypes and neurons in somatosensory cortex1-8. Here we used mouse genetic manipulations to investigate the contributions of peripheral mechanoreceptor subtypes to cortical responses to touch. Cortical neurons exhibited remarkably homogeneous and transient responses to skin indentation that resembled rapidly adapting (RA) low-threshold mechanoreceptor (LTMR) responses. Concurrent disruption of signals from both Aβ RA-LTMRs and Aβ slowly adapting (SA)-LTMRs eliminated cortical responses to light indentation forces. However, disruption of either LTMR subtype alone caused opposite shifts in cortical sensitivity but otherwise largely unaltered tactile responses, indicating that both subtypes contribute to normal cortical responses. Selective optogenetic activation of single action potentials in Aβ RA-LTMRs or Aβ SA-LTMRs drove low-latency responses in most mechanically sensitive cortical neurons. Similarly, most somatosensory thalamic neurons were also driven by activation of Aβ RA-LTMRs or Aβ SA-LTMRs. These findings support a model in which signals from physiologically distinct mechanoreceptor subtypes are extensively integrated and transformed within the subcortical somatosensory system to generate cortical representations of touch.
Collapse
|
12
|
Wahlbom A, Enander JMD, Jörntell H. Widespread Decoding of Tactile Input Patterns Among Thalamic Neurons. Front Syst Neurosci 2021; 15:640085. [PMID: 33664654 PMCID: PMC7921320 DOI: 10.3389/fnsys.2021.640085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whereas, there is data to support that cuneothalamic projections predominantly reach a topographically confined volume of the rat thalamus, the ventroposterior lateral (VPL) nucleus, recent findings show that cortical neurons that process tactile inputs are widely distributed across the neocortex. Since cortical neurons project back to the thalamus, the latter observation would suggest that thalamic neurons could contain information about tactile inputs, in principle regardless of where in the thalamus they are located. Here we use a previously introduced electrotactile interface for producing sets of highly reproducible tactile afferent spatiotemporal activation patterns from the tip of digit 2 and record neurons throughout widespread parts of the thalamus of the anesthetized rat. We find that a majority of thalamic neurons, regardless of location, respond to single pulse tactile inputs and generate spike responses to such tactile stimulation patterns that can be used to identify which of the inputs that was provided, at above-chance decoding performance levels. Thalamic neurons with short response latency times, compatible with a direct tactile afferent input via the cuneate nucleus, were typically among the best decoders. Thalamic neurons with longer response latency times as a rule were also found to be able to decode the digit 2 inputs, though typically at a lower decoding performance than the thalamic neurons with presumed direct cuneate inputs. These findings provide support for that tactile information arising from any specific skin area is widely available in the thalamocortical circuitry.
Collapse
Affiliation(s)
- Anders Wahlbom
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas M D Enander
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Shao Y, Hayward V, Visell Y. Compression of dynamic tactile information in the human hand. SCIENCE ADVANCES 2020; 6:eaaz1158. [PMID: 32494610 PMCID: PMC7159916 DOI: 10.1126/sciadv.aaz1158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/17/2020] [Indexed: 05/16/2023]
Abstract
A key problem in the study of the senses is to describe how sense organs extract perceptual information from the physics of the environment. We previously observed that dynamic touch elicits mechanical waves that propagate throughout the hand. Here, we show that these waves produce an efficient encoding of tactile information. The computation of an optimal encoding of thousands of naturally occurring tactile stimuli yielded a compact lexicon of primitive wave patterns that sparsely represented the entire dataset, enabling touch interactions to be classified with an accuracy exceeding 95%. The primitive tactile patterns reflected the interplay of hand anatomy with wave physics. Notably, similar patterns emerged when we applied efficient encoding criteria to spiking data from populations of simulated tactile afferents. This finding suggests that the biomechanics of the hand enables efficient perceptual processing by effecting a preneuronal compression of tactile information.
Collapse
Affiliation(s)
- Yitian Shao
- Department of Electrical and Computer Engineering, Media Arts and Technology Program, Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Vincent Hayward
- Sorbonne Université, Institut des Systèmes Intelligents et de Robotique, F-75005 Paris, France
- Centre for the Study of the Senses, School of Advanced Study, University of London, London, UK
- Actronika SAS, Paris, France
| | - Yon Visell
- Department of Electrical and Computer Engineering, Media Arts and Technology Program, Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Corresponding author.
| |
Collapse
|
14
|
Zora H, Rudner M, Montell Magnusson AK. Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. Eur J Neurosci 2019; 51:2236-2249. [PMID: 31872480 PMCID: PMC7383972 DOI: 10.1111/ejn.14658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023]
Abstract
Change in linguistic prosody generates a mismatch negativity response (MMN), indicating neural representation of linguistic prosody, while change in affective prosody generates a positive response (P3a), reflecting its motivational salience. However, the neural response to concurrent affective and linguistic prosody is unknown. The present paper investigates the integration of these two prosodic features in the brain by examining the neural response to separate and concurrent processing by electroencephalography (EEG). A spoken pair of Swedish words—[ˈfɑ́ːsɛn] phase and [ˈfɑ̀ːsɛn] damn—that differed in emotional semantics due to linguistic prosody was presented to 16 subjects in an angry and neutral affective prosody using a passive auditory oddball paradigm. Acoustically matched pseudowords—[ˈvɑ́ːsɛm] and [ˈvɑ̀ːsɛm]—were used as controls. Following the constructionist concept of emotions, accentuating the conceptualization of emotions based on language, it was hypothesized that concurrent affective and linguistic prosody with the same valence—angry [ˈfɑ̀ːsɛn] damn—would elicit a unique late EEG signature, reflecting the temporal integration of affective voice with emotional semantics of prosodic origin. In accordance, linguistic prosody elicited an MMN at 300–350 ms, and affective prosody evoked a P3a at 350–400 ms, irrespective of semantics. Beyond these responses, concurrent affective and linguistic prosody evoked a late positive component (LPC) at 820–870 ms in frontal areas, indicating the conceptualization of affective prosody based on linguistic prosody. This study provides evidence that the brain does not only distinguish between these two functions of prosody but also integrates them based on language and experience.
Collapse
Affiliation(s)
- Hatice Zora
- Department of Linguistics, Stockholm University, Stockholm, Sweden
| | - Mary Rudner
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| | - Anna K Montell Magnusson
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden.,Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|