1
|
Kishimoto T, Nishimura K, Morishita K, Fukuda A, Miyamae Y, Kumagai Y, Sumaru K, Nakanishi M, Hisatake K, Sano M. An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors. J Biol Eng 2024; 18:9. [PMID: 38229076 DOI: 10.1186/s13036-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Viral vectors are attractive gene delivery vehicles because of their broad tropism, high transduction efficiency, and durable expression. With no risk of integration into the host genome, the vectors developed from RNA viruses such as Sendai virus (SeV) are especially promising. However, RNA-based vectors have limited applicability because they lack a convenient method to control transgene expression by an external inducer. RESULTS We engineered a Csy4 switch in Sendai virus-based vectors by combining Csy4 endoribonuclease with mutant FKBP12 (DD: destabilizing domain) that becomes stabilized when a small chemical Shield1 is supplied. In this Shield1-responsive Csy4 (SrC) switch, Shield1 increases Csy4 fused with DD (DD-Csy4), which then cleaves and downregulates the transgene mRNA containing the Csy4 recognition sequence (Csy4RS). Moreover, when Csy4RS is inserted in the viral L gene, the SrC switch suppresses replication and transcription of the SeV vector in infected cells in a Shield1-dependent manner, thus enabling complete elimination of the vector from the cells. By temporally controlling BRN4 expression, a BRN4-expressing SeV vector equipped with the SrC switch achieves efficient, stepwise differentiation of embryonic stem cells into neural stem cells, and then into astrocytes. CONCLUSION SeV-based vectors with the SrC switch should find wide applications in stem cell research, regenerative medicine, and gene therapy, especially when precise control of reprogramming factor expression is desirable.
Collapse
Grants
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Takumi Kishimoto
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yusaku Miyamae
- Institute of Life and Environment Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mahito Nakanishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- TOKIWA-Bio, Inc, 2-1-6 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
2
|
Burramsetty AK, Nishimura K, Kishimoto T, Hamzah M, Kuno A, Fukuda A, Hisatake K. Locus-Specific Isolation of the Nanog Chromatin Identifies Regulators Relevant to Pluripotency of Mouse Embryonic Stem Cells and Reprogramming of Somatic Cells. Int J Mol Sci 2022; 23:ijms232315242. [PMID: 36499566 PMCID: PMC9740452 DOI: 10.3390/ijms232315242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pluripotency is a crucial feature of pluripotent stem cells, which are regulated by the core pluripotency network consisting of key transcription factors and signaling molecules. However, relatively less is known about the molecular mechanisms that modify the core pluripotency network. Here we used the CAPTURE (CRISPR Affinity Purification in situ of Regulatory Elements) to unbiasedly isolate proteins assembled on the Nanog promoter in mouse embryonic stem cells (mESCs), and then tested their functional relevance to the maintenance of mESCs and reprogramming of somatic cells. Gene ontology analysis revealed that the identified proteins, including many RNA-binding proteins (RBPs), are enriched in RNA-related functions and gene expression. ChIP-qPCR experiments confirmed that BCLAF1, FUBP1, MSH6, PARK7, PSIP1, and THRAP3 occupy the Nanog promoter region in mESCs. Knockdown experiments of these factors show that they play varying roles in self-renewal, pluripotency gene expression, and differentiation of mESCs as well as in the reprogramming of somatic cells. Our results show the utility of unbiased identification of chromatin-associated proteins on a pluripotency gene in mESCs and reveal the functional relevance of RBPs in ESC differentiation and somatic cell reprogramming.
Collapse
Affiliation(s)
- Arun Kumar Burramsetty
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Correspondence: (K.N.); (K.H.)
| | - Takumi Kishimoto
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Muhammad Hamzah
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Correspondence: (K.N.); (K.H.)
| |
Collapse
|
3
|
Anh LPH, Nishimura K, Kuno A, Linh NT, Kato T, Ohtaka M, Nakanishi M, Sugihara E, Sato TA, Hayashi Y, Fukuda A, Hisatake K. Downregulation of Odd-Skipped Related 2, a Novel Regulator of Epithelial-Mesenchymal Transition, Enables Efficient Somatic Cell Reprogramming. Stem Cells 2022; 40:397-410. [DOI: 10.1093/stmcls/sxac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Somatic cell reprogramming proceeds through a series of events to generate induced pluripotent stem cells (iPSCs). The early stage of reprogramming of mouse embryonic fibroblasts (MEFs) is characterized by rapid cell proliferation and morphological changes, which are accompanied by downregulation of mesenchyme-associated genes. However, the functional relevance of their downregulation to reprogramming remains poorly defined. In this study, we have screened transcriptional regulators that are downregulated immediately upon reprogramming, presumably through direct targeting by reprogramming factors. To test if these transcriptional regulators impact reprogramming when expressed continuously, we generated an expression vector that harbors human cytomegalovirus upstream open reading frame 2 (uORF2), which reduces translation to minimize the detrimental effect of an expressed protein. Screening of transcriptional regulators with this expression vector revealed that downregulation of odd-skipped related 2 (Osr2) is crucial for efficient reprogramming. Using a cell-based model for epithelial-mesenchymal transition (EMT), we show that Osr2 is a novel EMT regulator that acts through induction of TGF-β signaling. During reprogramming, Osr2 downregulation not only diminishes TGF-β signaling but also allows activation of Wnt signaling, thus promoting mesenchymal-epithelial transition (MET) toward acquisition of pluripotency. Our results illuminate the functional significance of Osr2 downregulation in erasing the mesenchymal phenotype at an early stage of somatic cell reprogramming.
Collapse
Affiliation(s)
- Le Phuong Hoang Anh
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nguyen Thuy Linh
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Tetsuo Kato
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | - Mahito Nakanishi
- TOKIWA-Bio, Inc. Tsukuba, Ibaraki 305-0047, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Beitz AM, Oakes CG, Galloway KE. Synthetic gene circuits as tools for drug discovery. Trends Biotechnol 2021; 40:210-225. [PMID: 34364685 DOI: 10.1016/j.tibtech.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Within mammalian systems, there exists enormous opportunity to use synthetic gene circuits to enhance phenotype-based drug discovery, to map the molecular origins of disease, and to validate therapeutics in complex cellular systems. While drug discovery has relied on marker staining and high-content imaging in cell-based assays, synthetic gene circuits expand the potential for precision and speed. Here we present a vision of how circuits can improve the speed and accuracy of drug discovery by enhancing the efficiency of hit triage, capturing disease-relevant dynamics in cell-based assays, and simplifying validation and readouts from organoids and microphysiological systems (MPS). By tracking events and cellular states across multiple length and time scales, circuits will transform how we decipher the causal link between molecular events and phenotypes to improve the selectivity and sensitivity of cell-based assays.
Collapse
Affiliation(s)
- Adam M Beitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Conrad G Oakes
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Nenasheva VV, Makarova IV, Stepanenko EA, Antonov SA, Novosadova EV, Narsullaeva AR, Kozikova LV, Polteva EA, Sleptsova LA, Shcherbatova NA, Khaidarova NV, Andreeva LE, Tarantul VZ. Human TAF-Iα promotes oncogenic transformation via enhancement of cell proliferation and suppression of apoptosis. In Vitro Cell Dev Biol Anim 2021; 57:531-538. [PMID: 34021475 DOI: 10.1007/s11626-021-00572-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/29/2021] [Indexed: 11/24/2022]
Abstract
Template activating factor-I (TAF-I) is a multifunctional protein involved in various biological processes including the inhibition of histone acetylation, DNA replication, cell cycle regulation, and oncogenesis. Two main TAF-I isoforms with different N-termini, TAF-Iα and TAF-Iβ (SET), are expressed in cells. There are numerous data about functional properties of TAF-Iβ, whereas the effects of TAF-Iα remain largely unexplored. Here, we employed focus formation and cell proliferation assays, TUNEL staining, cytological analysis, and RT-qPCR to compare the effects of human TAF-Iα and TAF-Iβ genes, transiently expressed in Rat2 cells and in Misgurnus fossilis loaches. We found that both TAF-I isoforms possessed equal oncogenic potential in these systems. Furthermore, an overexpression of human TAF-Iα and TAF-Iβ in Rat2 cells promoted their proliferation. Accordingly, the mitotic index was increased in the transgenic loaches expressing human TAF-Iα or TAF-Iβ. TUNEL assay as well as downregulation of p53 gene and upregulation of bcl-2 gene in these transgenic loaches demonstrated that both isoforms suppressed apoptosis. Thus, TAF-Iα isoform exerts the same oncogenic potential as TAF-Iβ, likely by suppressing the apoptosis and promoting cell proliferation.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| | - Irina V Makarova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Ekaterina A Stepanenko
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Stanislav A Antonov
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Ekaterina V Novosadova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Anastasia R Narsullaeva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Larisa V Kozikova
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, 196601, Russia
| | - Ekaterina A Polteva
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, 196601, Russia
| | - Lyudmila A Sleptsova
- Faculty of Biology, Department of Embryology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalya A Shcherbatova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Nella V Khaidarova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Lyudmila E Andreeva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| |
Collapse
|
6
|
Fujita H, Fujita T, Fujii H. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications. CRISPR J 2021; 4:290-300. [PMID: 33876963 DOI: 10.1089/crispr.2020.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A multitude of molecular interactions with chromatin governs various chromosomal functions in cells. Insights into the molecular compositions at specific genomic regions are pivotal to deepen our understanding of regulatory mechanisms and the pathogenesis of disorders caused by the abnormal regulation of genes. The locus-specific purification of genomic DNA using the clustered regularly interspaced short palindromic repeats (CRISPR) system enables the isolation of target genomic regions for identification of bound interacting molecules. This CRISPR-based DNA purification method has many applications. In this study, we present an overview of the CRISPR-based DNA purification methodologies as well as recent applications.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|