1
|
van den Berg L, Kokki K, Wowro SJ, Petricek KM, Deniz O, Stegmann CA, Robciuc M, Teesalu M, Melvin RG, Nieminen AI, Schupp M, Hietakangas V. Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange. Cell Rep 2023; 42:112739. [PMID: 37405919 DOI: 10.1016/j.celrep.2023.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.
Collapse
Affiliation(s)
- Linda van den Berg
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Krista Kokki
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sylvia J Wowro
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Konstantin M Petricek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Onur Deniz
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Catrin A Stegmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Mari Teesalu
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Richard G Melvin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3083, Australia
| | - Anni I Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
2
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Pan Y, Li W, Deng Z, Sun Y, Ma X, Liang R, Guo X, Sun Y, Li W, Jiao R, Xue L. Myc suppresses male-male courtship in Drosophila. EMBO J 2022; 41:e109905. [PMID: 35167135 PMCID: PMC8982623 DOI: 10.15252/embj.2021109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong natural selection on species, same-sex sexual attraction is widespread across animals, yet the underlying mechanisms remain elusive. Here, we report that the proto-oncogene Myc is required in dopaminergic neurons to inhibit Drosophila male-male courtship. Loss of Myc, either by mutation or neuro-specific knockdown, induced males' courtship propensity toward other males. Our genetic screen identified DOPA decarboxylase (Ddc) as a downstream target of Myc. While loss of Ddc abrogated Myc depletion-induced male-male courtship, Ddc overexpression sufficed to trigger such behavior. Furthermore, Myc-depleted males exhibited elevated dopamine level in a Ddc-dependent manner, and their male-male courtship was blocked by depleting the dopamine receptor DopR1. Moreover, Myc directly inhibits Ddc transcription by binding to a target site in the Ddc promoter, and deletion of this site by genome editing was sufficient to trigger male-male courtship. Finally, drug-mediated Myc depletion in adult neurons by GeneSwitch technique sufficed to elicit male-male courtship. Thus, this study uncovered a novel function of Myc in preventing Drosophila male-male courtship, and supports the crucial roles of genetic factors in inter-male sexual behavior.
Collapse
Affiliation(s)
- Yu Pan
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Wanzhen Li
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Zhu Deng
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Yihao Sun
- Zhuhai Precision Medical CenterGuangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xianjue Ma
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Ruijuan Liang
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiaowei Guo
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Ying Sun
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Wenzhe Li
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Renjie Jiao
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Lei Xue
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina,Zhuhai Precision Medical CenterGuangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
4
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Abstract
Circadian rhythms govern a large array of physiological and metabolic functions. Perturbations of the daily cycle have been linked to elevated risk of developing cancer as well as poor prognosis in patients with cancer. Also, expression of core clock genes or proteins is remarkably attenuated particularly in tumours of a higher stage or that are more aggressive, possibly linking the circadian clock to cellular differentiation. Emerging evidence indicates that metabolic control by the circadian clock underpins specific hallmarks of cancer metabolism. Indeed, to support cell proliferation and biomass production, the clock may direct metabolic processes of cancer cells in concert with non-clock transcription factors to control how nutrients and metabolites are utilized in a time-specific manner. We hypothesize that the metabolic switch between differentiation or stemness of cancer may be coupled to the molecular clockwork. Moreover, circadian rhythms of host organisms appear to dictate tumour growth and proliferation. This Review outlines recent discoveries of the interplay between circadian rhythms, proliferative metabolism and cancer, highlighting potential opportunities in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|