1
|
Kim N, Bonnycastle K, Kind PC, Cousin MA. Delayed recruitment of activity-dependent bulk endocytosis in Fmr1 knockout neurons. J Neurochem 2024; 168:3019-3033. [PMID: 38978454 DOI: 10.1111/jnc.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The presynapse performs an essential role in brain communication via the activity-dependent release of neurotransmitters. However, the sequence of events through which a presynapse acquires functionality is relatively poorly understood, which is surprising, since mutations in genes essential for its operation are heavily implicated in neurodevelopmental disorders. We addressed this gap in knowledge by determining the developmental trajectory of synaptic vesicle (SV) recycling pathways in primary cultures of rat hippocampal neurons. Exploiting a series of optical and morphological assays, we revealed that the majority of nerve terminals displayed activity-dependent calcium influx from 3 days in vitro (DIV), immediately followed by functional evoked exocytosis and endocytosis, although the number of responsive nerve terminals continued to increase until the second week in vitro. However, the most intriguing discovery was that activity-dependent bulk endocytosis (ADBE) was only observed from DIV 14 onwards. Importantly, optimal ADBE recruitment was delayed until DIV 21 in Fmr1 knockout neurons, which model Fragile X Syndrome (FXS). This implicates the delayed recruitment of ADBE as a potential contributing factor in the development of circuit dysfunction in FXS, and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nawon Kim
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Katherine Bonnycastle
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Domingues N, Catarino S, Cristóvão B, Rodrigues L, Carvalho FA, Sarmento MJ, Zuzarte M, Almeida J, Ribeiro-Rodrigues T, Correia-Rodrigues Â, Fernandes F, Rodrigues-Santos P, Aasen T, Santos NC, Korolchuk VI, Gonçalves T, Milosevic I, Raimundo N, Girão H. Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling. EMBO J 2024; 43:3627-3649. [PMID: 39044100 PMCID: PMC11377567 DOI: 10.1038/s44318-024-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Beatriz Cristóvão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Jani Almeida
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Ânia Correia-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Trond Aasen
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Teresa Gonçalves
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- University of Oxford, Centre for Human Genetics, Nuffield Department of Medicine, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Li M, Zheng J, Wu T, He Y, Guo J, Xu J, Gao C, Qu S, Zhang Q, Zhao J, Cheng W. Activation of TRPV4 Induces Exocytosis and Ferroptosis in Human Melanoma Cells. Int J Mol Sci 2022; 23:ijms23084146. [PMID: 35456964 PMCID: PMC9030060 DOI: 10.3390/ijms23084146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
TRPV4 (transient receptor potential vanilloid 4), a calcium permeable TRP ion channel, is known to play a key role in endocytosis. However, whether it contributes to exocytosis remains unclear. Here, we report that activation of TRPV4 induced massive exocytosis in both melanoma A375 cell and heterologous expression systems. We show here that, upon application of TRPV4-specific agonists, prominent vesicle priming from endoplasmic reticulum (ER) was observed, followed by morphological changes of mitochondrial crista may lead to cell ferroptosis. We further identified interactions between TRPV4 and folding/vesicle trafficking proteins, which were triggered by calcium entry through activated TRPV4. This interplay, in turn, enhanced TRPV4-mediated activation of folding and vesicle trafficking proteins to promote exocytosis. Our study revealed a signaling mechanism underlying stimulus-triggered exocytosis in melanoma and highlighted the role of cellular sensor TRPV4 ion channel in mediating ferroptosis.
Collapse
|
4
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
5
|
Azarnia Tehran D, Maritzen T. Endocytic proteins: An expanding repertoire of presynaptic functions. Curr Opin Neurobiol 2022; 73:102519. [PMID: 35217312 DOI: 10.1016/j.conb.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
From a presynaptic perspective, neuronal communication mainly relies on two interdependent events: The fast Ca2+-triggered fusion of neurotransmitter-containing synaptic vesicles (SVs) and their subsequent high-fidelity reformation. To allow rapid neurotransmission, SVs have evolved into fascinating molecular nanomachines equipped with a well-defined set of proteins. However, upon exocytosis, SVs fully collapse into the presynaptic plasma membrane leading to the dispersal of their molecular components. While the canonical function of endocytic proteins at the presynapse was believed to be the retrieval of SV proteins via clathrin-mediated endocytosis, it is now evident that clathrin-independent endocytic mechanisms predominate. We will highlight in how far these mechanisms still rely on the classical endocytic machinery and discuss the emerging functions of endocytic proteins in release site clearance and SV reformation from endosomal-like vacuoles.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany. https://twitter.com/@DomenicoAzTe
| | - Tanja Maritzen
- Department of Nanophysiology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.
| |
Collapse
|
6
|
López-Hernández T, Takenaka KI, Mori Y, Kongpracha P, Nagamori S, Haucke V, Takamori S. Clathrin-independent endocytic retrieval of SV proteins mediated by the clathrin adaptor AP-2 at mammalian central synapses. eLife 2022; 11:e71198. [PMID: 35014951 PMCID: PMC8752090 DOI: 10.7554/elife.71198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Conflicting models have been proposed regarding the mechanisms of SV endocytosis, most notably clathrin/adaptor protein complex 2 (AP-2)-mediated endocytosis and clathrin-independent ultrafast endocytosis. Partitioning between these pathways has been suggested to be controlled by temperature and stimulus paradigm. We report on the comprehensive survey of six major SV proteins to show that SV endocytosis in mouse hippocampal neurons at physiological temperature occurs independent of clathrin while the endocytic retrieval of a subset of SV proteins including the vesicular transporters for glutamate and GABA depend on sorting by the clathrin adaptor AP-2. Our findings highlight a clathrin-independent role of the clathrin adaptor AP-2 in the endocytic retrieval of select SV cargos from the presynaptic cell surface and suggest a revised model for the endocytosis of SV membranes at mammalian central synapses.
Collapse
Affiliation(s)
| | - Koh-ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
7
|
Moschetta M, Ravasenga T, De Fusco A, Maragliano L, Aprile D, Orlando M, Sacchetti S, Casagrande S, Lignani G, Fassio A, Baldelli P, Benfenati F. Ca 2+ binding to synapsin I regulates resting Ca 2+ and recovery from synaptic depression in nerve terminals. Cell Mol Life Sci 2022; 79:600. [PMID: 36409372 PMCID: PMC9678998 DOI: 10.1007/s00018-022-04631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Tiziana Ravasenga
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Antonio De Fusco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,Present Address: High-Definition Disease Modelling Lab, Campus IFOM-IEO, Milan, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Charitè Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Silvio Sacchetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Queens Square Institute of Neurology, University College London, London, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
8
|
Imbrosci B, Schmitz D, Orlando M. Automated Detection and Localization of Synaptic Vesicles in Electron Microscopy Images. eNeuro 2022; 9:ENEURO.0400-20.2021. [PMID: 34983830 PMCID: PMC8805189 DOI: 10.1523/eneuro.0400-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Information transfer and integration in the brain occurs at chemical synapses and is mediated by the fusion of synaptic vesicles filled with neurotransmitter. Synaptic vesicle dynamic spatial organization regulates synaptic transmission as well as synaptic plasticity. Because of their small size, synaptic vesicles require electron microscopy (EM) for their imaging, and their analysis is conducted manually. The manual annotation and segmentation of the hundreds to thousands of synaptic vesicles, is highly time consuming and limits the throughput of data collection. To overcome this limitation, we built an algorithm, mainly relying on convolutional neural networks (CNNs), capable of automatically detecting and localizing synaptic vesicles in electron micrographs. The algorithm was trained on murine synapses but we show that it works well on synapses from different species, ranging from zebrafish to human, and from different preparations. As output, we provide the vesicle count and coordinates, the nearest neighbor distance (nnd) and the estimate of the vesicles area. We also provide a graphical user interface (GUI) to guide users through image analysis, result visualization, and manual proof-reading. The application of our algorithm is especially recommended for images produced by transmission EM. Since this type of imaging is used routinely to investigate presynaptic terminals, our solution will likely be of interest for numerous research groups.
Collapse
Affiliation(s)
- Barbara Imbrosci
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience (BCCN) Berlin, Berlin 10115, Germany
- Einstein Center for Neurosciences (ECN) Berlin, Berlin 10117, Germany
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin 13125, Germany
| | - Marta Orlando
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Berlin 10117, Germany
| |
Collapse
|
9
|
Brill SE, Maraslioglu A, Kurz C, Kramer F, Fuhr MF, Singh A, Friauf E. Glycinergic Transmission in the Presence and Absence of Functional GlyT2: Lessons From the Auditory Brainstem. Front Synaptic Neurosci 2021; 12:560008. [PMID: 33633558 PMCID: PMC7900164 DOI: 10.3389/fnsyn.2020.560008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Synaptic transmission is controlled by re-uptake systems that reduce transmitter concentrations in the synaptic cleft and recycle the transmitter into presynaptic terminals. The re-uptake systems are thought to ensure cytosolic concentrations in the terminals that are sufficient for reloading empty synaptic vesicles (SVs). Genetic deletion of glycine transporter 2 (GlyT2) results in severely disrupted inhibitory neurotransmission and ultimately to death. Here we investigated the role of GlyT2 at inhibitory glycinergic synapses in the mammalian auditory brainstem. These synapses are tuned for resilience, reliability, and precision, even during sustained high-frequency stimulation when endocytosis and refilling of SVs probably contribute substantially to efficient replenishment of the readily releasable pool (RRP). Such robust synapses are formed between MNTB and LSO neurons (medial nucleus of the trapezoid body, lateral superior olive). By means of patch-clamp recordings, we assessed the synaptic performance in controls, in GlyT2 knockout mice (KOs), and upon acute pharmacological GlyT2 blockade. Via computational modeling, we calculated the reoccupation rate of empty release sites and RRP replenishment kinetics during 60-s challenge and 60-s recovery periods. Control MNTB-LSO inputs maintained high fidelity neurotransmission at 50 Hz for 60 s and recovered very efficiently from synaptic depression. During 'marathon-experiments' (30,600 stimuli in 20 min), RRP replenishment accumulated to 1,260-fold. In contrast, KO inputs featured severe impairments. For example, the input number was reduced to ~1 (vs. ~4 in controls), implying massive functional degeneration of the MNTB-LSO microcircuit and a role of GlyT2 during synapse maturation. Surprisingly, neurotransmission did not collapse completely in KOs as inputs still replenished their small RRP 80-fold upon 50 Hz | 60 s challenge. However, they totally failed to do so for extended periods. Upon acute pharmacological GlyT2 inactivation, synaptic performance remained robust, in stark contrast to KOs. RRP replenishment was 865-fold in marathon-experiments, only ~1/3 lower than in controls. Collectively, our empirical and modeling results demonstrate that GlyT2 re-uptake activity is not the dominant factor in the SV recycling pathway that imparts indefatigability to MNTB-LSO synapses. We postulate that additional glycine sources, possibly the antiporter Asc-1, contribute to RRP replenishment at these high-fidelity brainstem synapses.
Collapse
Affiliation(s)
- Sina E Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Catharina Kurz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Florian Kramer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin F Fuhr
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE, United States
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
10
|
Nosov G, Kahms M, Klingauf J. The Decade of Super-Resolution Microscopy of the Presynapse. Front Synaptic Neurosci 2020; 12:32. [PMID: 32848695 PMCID: PMC7433402 DOI: 10.3389/fnsyn.2020.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
The presynaptic compartment of the chemical synapse is a small, yet extremely complex structure. Considering its size, most methods of optical microscopy are not able to resolve its nanoarchitecture and dynamics. Thus, its ultrastructure could only be studied by electron microscopy. In the last decade, new methods of optical superresolution microscopy have emerged allowing the study of cellular structures and processes at the nanometer scale. While this is a welcome addition to the experimental arsenal, it has necessitated careful analysis and interpretation to ensure the data obtained remains artifact-free. In this article we review the application of nanoscopic techniques to the study of the synapse and the progress made over the last decade with a particular focus on the presynapse. We find to our surprise that progress has been limited, calling for imaging techniques and probes that allow dense labeling, multiplexing, longer imaging times, higher temporal resolution, while at least maintaining the spatial resolution achieved thus far.
Collapse
Affiliation(s)
- Georgii Nosov
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany.,CIM-IMPRS Graduate Program in Münster, Münster, Germany
| | - Martin Kahms
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jurgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Activity and Cytosolic Na + Regulate Synaptic Vesicle Endocytosis. J Neurosci 2020; 40:6112-6120. [PMID: 32605936 DOI: 10.1523/jneurosci.0119-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Retrieval of synaptic vesicles via endocytosis is essential for maintaining sustained synaptic transmission, especially for neurons that fire action potentials at high frequencies. However, how neuronal activity regulates synaptic vesicle recycling is largely unknown. Here we report that Na+ substantially accumulated in the mouse calyx of Held terminals of either sex during repetitive high-frequency spiking. Elevated presynaptic Na+ accelerated both slow and rapid forms of endocytosis and facilitated endocytosis overshoot, but did not affect the readily releasable pool size, Ca2+ influx, or exocytosis. To examine whether this facilitation of endocytosis is related to the Na+-dependent vesicular content change, we dialyzed glutamate into the presynaptic cytosol or blocked the vesicular glutamate uptake with bafilomycin and found that the rate of endocytosis was not affected by regulating the vesicular glutamate content. Endocytosis is critically dependent on intracellular Ca2+, and the activity of Na+/Ca2+ exchanger (NCX) may be altered when the Na+ gradient is changed. However, neither NCX inhibitor nor change of extracellular Na+ concentration affected the endocytosis rate. Moreover, two-photon Ca2+ imaging showed that presynaptic Na+ did not affect the action potential-evoked intracellular Ca2+ transient and decay. Therefore, we revealed a novel mechanism of cytosolic Na+ in accelerating vesicle endocytosis. During high-frequency synaptic transmission, when large numbers of synaptic vesicles were fused, the rapid buildup of presynaptic cytosolic Na+ promoted vesicle recycling and sustained synaptic transmission.SIGNIFICANCE STATEMENT High-frequency firing neurons are widely distributed in the CNS. A large number of synaptic vesicles are released during high-frequency synaptic transmission; accordingly, synaptic vesicles need to be recycled rapidly to replenish the vesicle pool. Synaptic vesicle exocytosis and endocytosis are tightly coupled, and their coupling is essential for synaptic function and structural stability. We showed here that intracellular Na+ concentration at the calyx of Held terminal increased rapidly during spike activity and the increased Na+ accelerated endocytosis. Thus, when large numbers of synaptic vesicles are released during high-frequency synaptic transmission, Na+ accumulated in terminals and facilitated vesicle recycling. These findings represent a novel cellular mechanism that supports reliable synaptic transmission at high frequency in the CNS.
Collapse
|
12
|
Chanaday NL, Kavalali ET. Is Ca 2+ Essential for Synaptic Vesicle Endocytosis? Trends Neurosci 2020; 43:77-79. [PMID: 31910996 DOI: 10.1016/j.tins.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 11/27/2022]
Abstract
Synaptic vesicle fusion is coupled to swift retrieval of vesicle components from the synaptic plasma membrane. Ca2+ has been assumed to be a key mediator of this coupling. In a recent study, Orlando et al. unequivocally demonstrate that Ca2+ is not essential for synaptic vesicle retrieval.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|