1
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Li C, He J, Meng F, Wang F, Sun H, Zhang H, Dong L, Zhang M, Xu Q, Liang L, Li Y, Yang T, He M, Wang T, Lin J, Sun J, Huang Q, Guo L, Zhang X, Mai S, Zheng H. Nuclear localization of TET2 requires β-catenin activation and correlates with favourable prognosis in colorectal cancer. Cell Death Dis 2023; 14:552. [PMID: 37620362 PMCID: PMC10449923 DOI: 10.1038/s41419-023-06038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
Mutation-induced malfunction of ten-eleven translocation methylcytosine dioxygenase 2 (TET2) is widely reported in haematological malignancies. However, the role of TET2 in solid cancers, including colorectal cancer (CRC), is unclear. Here, we found that TET2 malfunction in CRC is mostly due to decreased nuclear localization and that nuclear localization of TET2 is correlated with better survival of patients. To explore the underlying mechanisms, 14 immortalized solid tumour cell lines and 12 primary CRC cell lines were used. TET2 was mostly detected in the nucleus, and it induced significant DNA demethylation and suppressed cell growth by demethylating RORA and SPARC in cell lines like SW480. While in cell lines like SW620, TET2 was observed in the cytosol and did not affect DNA methylation or cell growth. Further examination with immunoprecipitation-mass spectrometry illustrated that β-catenin activation was indispensable for the nuclear localization and tumour suppression effects of TET2. In addition, the β-catenin pathway activator IM12 and the TET2 activator vitamin C were used simultaneously to enhance the effects of TET2 under low-expression conditions, and synergistic inhibitory effects on the growth of cancer were observed both in vitro and in vivo. Collectively, these data suggest that β-catenin-mediated nuclear localization of TET2 is an important therapeutic target for solid tumours.
Collapse
Affiliation(s)
- Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Jingcai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Fei Meng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fuhui Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Huizhong Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Linna Dong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengdan Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoran Xu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiechun Lin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Qiuling Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shijuan Mai
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Kolli U, Roy S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front Microbiol 2023; 14:1233194. [PMID: 37670983 PMCID: PMC10475585 DOI: 10.3389/fmicb.2023.1233194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.
Collapse
Affiliation(s)
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Urata S, Yasuda J, Iwasaki M. Loperamide Inhibits Replication of Severe Fever with Thrombocytopenia Syndrome Virus. Viruses 2021; 13:v13050869. [PMID: 34068464 PMCID: PMC8150324 DOI: 10.3390/v13050869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV). SFTS is mainly prevalent in East Asia. It has a mortality rate of up to 30%, and there is no approved treatment against the disease. In this study, we evaluated the effect of loperamide, an antidiarrheal and antihyperalgesic agent, on the propagation of SFTSV in a cell culture system. METHODS SFTSV-infected human cell lines were exposed to loperamide, and viral titers were evaluated. To clarify the mode of action of loperamide, several chemical compounds having shared targets with loperamide were used. Calcium imaging was also performed to understand whether loperamide treatment affected calcium influx. RESULTS Loperamide inhibited SFTSV propagation in several cell lines. It inhibited SFTSV in the post-entry step and restricted calcium influx into the cell. Furthermore, nifedipine, a calcium channel inhibitor, also blocked post-entry step of SFTSV infection. CONCLUSIONS Loperamide inhibits SFTSV propagation mainly by restraining calcium influx into the cytoplasm. This indicates that loperamide, a Food and Drug Administration (FDA)-approved drug, has the potential for being used as a treatment option against SFTS.
Collapse
Affiliation(s)
- Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Correspondence: ; Tel.: +81-95-819-7970
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Osaka 565-0871, Japan;
| |
Collapse
|
5
|
Hu J, Yao J, Wang J, Pan LY, Qiu JG, Zhang CY. A single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1. Chem Commun (Camb) 2021; 57:3543-3546. [PMID: 33870340 DOI: 10.1039/d1cc01057c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1 (TET1). This biosensor can sensitively detect TET1 in a homogeneous manner without the involvement of any specific antibodies, and it can be used for accurate measurement of TET1 activity in human neuroblastoma cells and the screening of TET1 inhibitors.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
6
|
Sun J, Yang J, Miao X, Loh HH, Pei D, Zheng H. Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:7. [PMID: 33649938 PMCID: PMC7921253 DOI: 10.1186/s13619-020-00070-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epigenetic modifications, namely non-coding RNAs, DNA methylation, and histone modifications such as methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation play a significant role in brain development. DNA methyltransferases, methyl-CpG binding proteins, and ten-eleven translocation proteins facilitate the maintenance, interpretation, and removal of DNA methylation, respectively. Different forms of methylation, including 5-methylcytosine, 5-hydroxymethylcytosine, and other oxidized forms, have been detected by recently developed sequencing technologies. Emerging evidence suggests that the diversity of DNA methylation patterns in the brain plays a key role in fine-tuning and coordinating gene expression in the development, plasticity, and disorders of the mammalian central nervous system. Neural stem cells (NSCs), originating from the neuroepithelium, generate neurons and glial cells in the central nervous system and contribute to brain plasticity in the adult mammalian brain. MAIN BODY Here, we summarized recent research in proteins responsible for the establishment, maintenance, interpretation, and removal of DNA methylation and those involved in the regulation of the proliferation and differentiation of NSCs. In addition, we discussed the interactions of chemicals with epigenetic pathways to regulate NSCs as well as the connections between proteins involved in DNA methylation and human diseases. CONCLUSION Understanding the interplay between DNA methylation and NSCs in a broad biological context can facilitate the related studies and reduce potential misunderstanding.
Collapse
Affiliation(s)
- Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.
| | - Junzheng Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Xiaoli Miao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Duanqing Pei
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, Westlake University, Hangzhou, 310024, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China. .,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Xu C, Fan W, Zhang Y, Loh HH, Law PY. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells 2021; 39:600-616. [PMID: 33452745 DOI: 10.1002/stem.3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Although the roles of opioid receptors in neurogenesis have been implicated in previous studies, the mechanism by which κ-opioid receptor (OPRK1) regulates adult neurogenesis remains elusive. We now demonstrate that two agonists of OPRK1, U50,488H and dynorphin A, inhibit adult neurogenesis by hindering neuronal differentiation of mouse hippocampal neural stem cells (NSCs), both in vitro and in vivo. This effect was blocked by nor-binaltorphimine (nor-BNI), a specific antagonist of OPRK1. By examining neurogenesis-related genes, we found that OPRK1 agonists were able to downregulate the expression of Pax6, Neurog2, and NeuroD1 in mouse hippocampal NSCs, in a way that Pax6 regulates the transcription of Neurog2 and Neurod1 by directly interacting with their promoters. Moreover, this effect of OPRK1 was accomplished by inducing expression of miR-7a, a miRNA that specifically targeted Pax6 by direct interaction with its 3'-UTR sequence, and thereby decreased the levels of Pax6, Neurog2, and NeuroD1, thus resulted in hindrance of neuronal differentiation of NSCs. Thus, by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression, OPRK1 agonists hinder the neuronal differentiation of NSCs and hence inhibit adult neurogenesis in mouse hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Meng F, Li Y, Sun H, Li C, Li Q, Law PY, Loh HH, Liang L, Zheng H. Naloxone Facilitates Contextual Learning and Memory in a Receptor-Independent and Tet1-Dependent Manner. Cell Mol Neurobiol 2020; 41:1031-1038. [PMID: 32989585 DOI: 10.1007/s10571-020-00970-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Opioids, like morphine and naloxone, regulate the proliferation and neuronal differentiation of neural stem cells (NSCs) in a receptor-independent and ten-eleven translocation methylcytosine dioxygenase (TET1)-dependent manner in vitro. Whether naloxone regulates hippocampal NSCs and contextual learning in vivo in a similar manner was determined. Naloxone infusion increased the Ki67 and Doublecortin positive cells in subgranular zone of wild type mice, which suggested the increased proliferation and differentiation of hippocampal NSCs in vivo and was consistent with the in vitro functions of naloxone. In addition, naloxone infusion also facilitated the contextual learning and memory of wild type mice. To determine the contribution of μ-opioid receptor (OPRM1) and TET1 to these functions of naloxone, several types of knockout mice were used. Since Tet1-/- mice have high deficiency in contextual learning and memory, Tet1+/- mice were used instead. The abilities of naloxone to regulate NSCs and to facilitate contextual learning were significantly impaired in Tet1+/- mice. In addition, these abilities of naloxone were not affected in Oprm1-/- mice. Therefore, naloxone facilitates contextual learning and memory in a receptor-independent and Tet1-dependent manner, which provides new understanding on the receptor-independent functions of opioids.
Collapse
Affiliation(s)
- Fei Meng
- University of Science and Technology of China, Hefei, 230026, Anhui, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China
| | - Yuan Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Hao Sun
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Changpeng Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Lining Liang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|