1
|
Wang M, Cai G, Gilani SM. TRPS1 expression in cytologic specimens of salivary duct carcinoma and other salivary gland tumors. Ann Diagn Pathol 2025; 74:152406. [PMID: 39547127 DOI: 10.1016/j.anndiagpath.2024.152406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Recent studies suggest that trichorhinophalangeal syndrome type 1 (TRPS1) is sensitive immunomarker for breast carcinoma (BC). Salivary duct carcinoma (SDC) of salivary gland can share similar morphologic and immunophenotypic features with BC. This study aimed to assess the expression of TRPS1 in SDC and other salivary gland tumors (SGTs). Cytology cases and selected surgical specimens of SGTs were retrieved. Forty-three cases were selected and TRPS1 immunohistochemistry (IHC) was performed on cell blocks and some histologic specimens. Of those 43 cases, all 13 SDC cases showed TRPS1 expression except for one case. The remaining 30 cases include pleomorphic adenoma (n = 7), Warthin tumor (n = 4), basal cell adenoma (n = 3), adenoid cystic carcinoma (n = 2), secretory carcinoma (n = 5), mucoepidermoid carcinoma (n = 4), and acinic cell carcinoma (n = 5). Three of thirty cases were negative for TRPS1 while the remainder showed variable expression of TRPS1 ranging from focal weak to diffuse strong staining. The three negative cases include a case of secretory carcinoma, mucoepidermoid carcinoma and Warthin tumor. Our study confirmed that TRPS1 expression is present in SDC and other SGTs, indicating an overlapping immunoprofile with breast cancer. Additionally, it may not help differentiate SDC or SGTs from each other. Further studies with larger cohorts are needed.
Collapse
Affiliation(s)
- Minhua Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Syed M Gilani
- Department of Pathology, Albany Medical Center, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
He X, Huang H, Liu Y, Li H, Ren H. Analysis of the function, mechanism and clinical application prospect of TRPS1, a new marker for breast cancer. Gene 2025; 932:148880. [PMID: 39181273 DOI: 10.1016/j.gene.2024.148880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.
Collapse
Affiliation(s)
- Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Huifen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huayan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Zhou L, Liu J, Yao P, Liu X, Chen F, Chen Y, Zhou L, Shen C, Zhou Y, Du X, Hu J. Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma. J Transl Med 2024; 22:1163. [PMID: 39741285 DOI: 10.1186/s12967-024-06011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue. METHODS Utilizing spatial transcriptomics (ST) sequencing technology, we conducted a study on FFPE (formalin-fixed paraffin-embedded) tumor samples from CSCC patients. Coupled with single-cell RNA sequencing (scRNA-seq) data after deconvolution, we described spatial distribution maps of tumor leading edge and core regions in detail. Tumor tissues were classified into hypermetabolic and hypometabolic regions to analyze the metabolism profiles and tumor differentiation degree across different spatial areas. We also employed The Cancer Genome Atlas (TCGA) database to examine the analysis results of ST data. RESULTS Our findings indicated a more complex tumor microenvironment in hypermetabolic regions. Cell-cell communication analysis showed that various cells in tumor microenvironment were influenced by the signalling molecule APP released by cancer cells and higher expression of APP was observed in hypermetabolic regions. Furthermore, our results revealed the correlation between APP and the transcription factor TRPS1. Both APP and TRPS1 demonstrated significant effects on cancer cell proliferation, migration, and invasion, potentially contributing to tumor progression. CONCLUSIONS Utilizing ST, scRNA-seq, and TCGA database, we examined the spatial metabolic profiles of CSCC tissues, including metabolism distribution, metabolic variations, and the relationship between metabolism and tumor differentiation degree. Additionally, potential cancer-promoting factors were proposed, offering a valuable foundation for the development of more effective treatment strategies for CSCC.
Collapse
Affiliation(s)
- Limin Zhou
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China
| | - Jiejie Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Peipei Yao
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Fei Chen
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, 430072, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Xin Du
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| | - Junbo Hu
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
4
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Wang Y, Liang J. Pioneer factors for DNA replication initiation in metazoans. Bioessays 2024; 46:e2400002. [PMID: 38881154 DOI: 10.1002/bies.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Precise DNA replication is fundamental for genetic inheritance. In eukaryotes, replication initiates at multiple origins that are first "licensed" and subsequently "fired" to activate DNA synthesis. Despite the success in identifying origins with specific DNA motifs in Saccharomyces cerevisiae, no consensus sequence or sequences with a predictive value of replication origins have been recognized in metazoan genomes. Rather, epigenetic rules and chromatin structures are believed to play important roles in governing the selection and activation of replication origins. We propose that replication initiation is facilitated by a group of sequence-specific "replication pioneer factors," which function to increase chromatin accessibility and foster a chromatin environment that is conducive to the loading of the prereplication complex. Dysregulation of the function of these factors may lead to gene duplication, genomic instability, and ultimately the occurrence of pathological conditions such as cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Urzúa-Traslaviña CG, van Lieshout T, Boulogne F, Domanegg K, Zidan M, Bakker OB, Claringbould A, de Ridder J, Zwart W, Westra HJ, Deelen P, Franke L. Co-expression in tissue-specific gene networks links genes in cancer-susceptibility loci to known somatic driver genes. BMC Med Genomics 2024; 17:186. [PMID: 39010058 PMCID: PMC11247850 DOI: 10.1186/s12920-024-01941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The genetic background of cancer remains complex and challenging to integrate. Many somatic mutations within genes are known to cause and drive cancer, while genome-wide association studies (GWAS) of cancer have revealed many germline risk factors associated with cancer. However, the overlap between known somatic driver genes and positional candidate genes from GWAS loci is surprisingly small. We hypothesised that genes from multiple independent cancer GWAS loci should show tissue-specific co-regulation patterns that converge on cancer-specific driver genes. RESULTS We studied recent well-powered GWAS of breast, prostate, colorectal and skin cancer by estimating co-expression between genes and subsequently prioritising genes that show significant co-expression with genes mapping within susceptibility loci from cancer GWAS. We observed that the prioritised genes were strongly enriched for cancer drivers defined by COSMIC, IntOGen and Dietlein et al. The enrichment of known cancer driver genes was most significant when using co-expression networks derived from non-cancer samples of the relevant tissue of origin. CONCLUSION We show how genes within risk loci identified by cancer GWAS can be linked to known cancer driver genes through tissue-specific co-expression networks. This provides an important explanation for why seemingly unrelated sets of genes that harbour either germline risk factors or somatic mutations can eventually cause the same type of disease.
Collapse
Affiliation(s)
- Carlos G Urzúa-Traslaviña
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Tijs van Lieshout
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Floranne Boulogne
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kevin Domanegg
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mahmoud Zidan
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Olivier B Bakker
- Wellcome Sanger Institute, Human Genetics, Hinxton, UK
- Open Targets, Hinxton, UK
| | - Annique Claringbould
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- EMBL Heidelberg, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jeroen de Ridder
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Lennartz M, Löhr N, Höflmayer D, Dwertmann Rico S, von Bargen C, Kind S, Reiswich V, Viehweger F, Lutz F, Bertram V, Fraune C, Gorbokon N, Weidemann S, Blessin NC, Hube-Magg C, Menz A, Schlichter R, Krech T, Hinsch A, Burandt E, Sauter G, Simon R, Kluth M, Marx AH, Lebok P, Dum D, Minner S, Jacobsen F, Clauditz TS, Bernreuther C, Steurer S. TRPS1 is a Highly Sensitive Marker for Breast Cancer: A Tissue Microarray Study Evaluating More Than 19,000 Tumors From 152 Different Tumor Entities. Am J Surg Pathol 2024; 48:637-651. [PMID: 38647255 PMCID: PMC11093513 DOI: 10.1097/pas.0000000000002213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Trichorhinophalangeal syndrome 1 (TRPS1) is a nuclear protein highly expressed in breast epithelial cells. TRPS1 immunohistochemistry (IHC) has been suggested as a breast cancer marker. To determine the diagnostic and prognostic utility of TRPS1 IHC, tissue microarrays containing 19,201 samples from 152 different tumor types and subtypes were analyzed. GATA3 IHC was performed in a previous study. TRPS1 staining was seen in 86 of 152 tumor categories with 36 containing at least one strongly positive case. TRPS1 staining predominated in various types of breast carcinomas (51%-100%), soft tissue tumors (up to 100%), salivary gland tumors (up to 46%), squamous cell carcinomas (up to 35%), and gynecological cancers (up to 40%). TRPS1 positivity occurred in 1.8% of 1083 urothelial neoplasms. In invasive breast carcinoma of no special type, low TRPS1 expression was linked to high grade ( P = 0.0547), high pT ( P < 0.0001), nodal metastasis ( P = 0.0571), loss of estrogen receptor and progesterone receptor expression ( P < 0.0001 each), and triple-negative status ( P < 0.0001) but was unrelated to patient survival ( P = 0.8016). In squamous cell carcinomas from 11 different sites, low TRPS1 expression was unrelated to tumor phenotype. Positivity for both TRPS1 and GATA3 occurred in 47.4% to 100% of breast cancers, up to 30% of salivary gland tumors, and 29 (0.3%) of 9835 tumors from 134 other cancer entities. TRPS1 IHC has high utility for the identification of cancers of breast (or salivary gland) origin, especially in combination with GATA3. The virtual absence of TRPS1 positivity in urothelial neoplasms is useful for the distinction of GATA3-positive urothelial carcinoma from breast cancer.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neele Löhr
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Clara von Bargen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veit Bertram
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C. Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Tollot-Wegner M, Jessen M, Kim K, Sanz-Moreno A, Spielmann N, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, von Eyss B. TRPS1 maintains luminal progenitors in the mammary gland by repressing SRF/MRTF activity. Breast Cancer Res 2024; 26:74. [PMID: 38702730 PMCID: PMC11067134 DOI: 10.1186/s13058-024-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.
Collapse
Affiliation(s)
- Marie Tollot-Wegner
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marco Jessen
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - KyungMok Kim
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstraße. 1, 85764, Neuherberg, Germany
| | - Björn von Eyss
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
9
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor alpha (ER) binding and ER target gene expression in luminal breast cancer cells. PLoS Genet 2024; 20:e1011159. [PMID: 38377146 PMCID: PMC10906895 DOI: 10.1371/journal.pgen.1011159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G. Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center Member, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J. Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
10
|
Bachert SE, Di J, Zhang S, Short HE, Piecoro DW, McDonald RJ, Myint ZW, Hensley PJ, Allison DB. TRPS1 expression in primary and metastatic prostatic adenocarcinoma, muscle invasive bladder urothelial carcinoma, and breast carcinoma: Is TRPS1 truly specific and sensitive for a breast primary? Hum Pathol 2024; 143:42-49. [PMID: 38052269 PMCID: PMC10842859 DOI: 10.1016/j.humpath.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Trichorhinophalangeal syndrome type 1 (TRPS1) has been reported to be a sensitive and specific immunohistochemical (IHC) marker for breast carcinomas, especially when determining primary site of origin. However, there is limited data on TRPS1 expression in prostate and bladder cancers. A two-phase study was performed with 1) an exploratory cohort analyzing TRPS1 gene alterations in prostate, bladder, and breast carcinoma and TPRS1 mRNA expression data in prostate and bladder carcinoma; and 2) TRPS1 and GATA3 IHC in a confirmatory cohort in prostate, bladder, and breast carcinoma samples. Gene alterations were identified in a subset of breast, bladder, and prostate carcinomas and mRNA was consistently detected. In the IHC cohort, 183/210 (87.1 %) of breast, 22/69 (31.9 %) of prostate, and 20/73 (27.4 %) of urothelial carcinomas showed staining with TRPS1. Intermediate to high expression of TRPS1 was observed in 173/210 (82.8 %) of breast, 17/69 (24.6 %) of prostate, and 15/73 (20.5 %) of urothelial carcinomas. Furthermore, in prostate cancer, 26.9 % of pelvic lymph node metastases and 50 % in sites of distant metastases showed expression. Increased TRPS1 mRNA expression (p = 0.032) and IHC expression (p = 0.040) correlated with worse overall survival in bladder cancer. By comparison, GATA3 IHC stained 136/210 (64.8 %) of breast, 0/69 (0 %) of prostate, and 63/73 (93 %) of bladder carcinomas. Intermediate to high expression of GATA3 was seen in 131/210 (62.4 %) of breast and 63/73 (93 %) of bladder carcinomas. This study shows there is significant staining of TRPS1 in bladder and prostate cancers. As a result, comprehensive studies are needed to establish the true specificity of TRPS1 IHC stain across various tumor types before its widespread clinical adoption.
Collapse
Affiliation(s)
- S Emily Bachert
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Jing Di
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Shengyi Zhang
- Department of Computer Science, University of Kentucky College of Engineering, Lexington, KY, 40536, USA.
| | - Heather E Short
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Dava W Piecoro
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Zin W Myint
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Markey Cancer Center, Lexington, KY, 40536, USA.
| | - Patrick J Hensley
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Markey Cancer Center, Lexington, KY, 40536, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Hüttner SS, Henze H, Elster D, Koch P, Anderer U, von Eyss B, von Maltzahn J. A dysfunctional miR-1-TRPS1-MYOG axis drives ERMS by suppressing terminal myogenic differentiation. Mol Ther 2023; 31:2612-2632. [PMID: 37452493 PMCID: PMC10492030 DOI: 10.1016/j.ymthe.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.
Collapse
Affiliation(s)
- Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Dana Elster
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany.
| |
Collapse
|
12
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor (ER) binding and ER target gene expression in luminal breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547524. [PMID: 37461612 PMCID: PMC10349936 DOI: 10.1101/2023.07.03.547524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer in women. The most common subtype is luminal breast cancer, which is typically driven by the estrogen receptor α (ER), a transcription factor (TF) that activates many genes required for proliferation. Multiple effective therapies target this pathway, but individuals often develop resistance. Thus, there is a need to identify additional targets that regulate ER activity and contribute to breast tumor progression. TRPS1 is a repressive GATA-family TF that is overexpressed in breast tumors. Common genetic variants in the TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. However, we do not know how TRPS1 regulates target genes to mediate these breast cancer patient and cellular outcomes. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over eighty percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes ER to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the activity of other TFs, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
13
|
Chetverina D, Vorobyeva NE, Gyorffy B, Shtil AA, Erokhin M. Analyses of Genes Critical to Tumor Survival Reveal Potential 'Supertargets': Focus on Transcription. Cancers (Basel) 2023; 15:cancers15113042. [PMID: 37297004 DOI: 10.3390/cancers15113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
14
|
Obradovic A, Ager C, Turunen M, Nirschl T, Khosravi-Maharlooei M, Iuga A, Jackson CM, Yegnasubramanian S, Tomassoni L, Fernandez EC, McCann P, Rogava M, DeMarzo AM, Kochel CM, Allaf M, Bivalacqua T, Lim M, Realubit R, Karan C, Drake CG, Califano A. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 2023; 41:933-949.e11. [PMID: 37116491 PMCID: PMC10193511 DOI: 10.1016/j.ccell.2023.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey Ager
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alina Iuga
- Department of Pathology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ester Calvo Fernandez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick McCann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M DeMarzo
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
A Genome-Wide Association Study Identified Novel Genetic Susceptibility Loci for Oral Cancer in Taiwan. Int J Mol Sci 2023; 24:ijms24032789. [PMID: 36769103 PMCID: PMC9917812 DOI: 10.3390/ijms24032789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Taiwan has the highest incidence rate of oral cancer in the world. Although oral cancer is mostly an environmentally induced cancer, genetic factors also play an important role in its etiology. Genome-wide association studies (GWAS) have identified nine susceptibility regions for oral cancers in populations of European descent. In this study, we performed the first GWAS of oral cancer in Taiwan with 1529 cases and 44,572 controls. We confirmed two previously reported loci on the 6p21.33 (HLA-B) and 6p21.32 (HLA-DQ gene cluster) loci, highlighting the importance of the human leukocyte antigen and, hence, the immunologic mechanisms in oral carcinogenesis. The TERT-CLMPT1L locus on 5p15.33, the 4q23 ADH1B locus, and the LAMC3 locus on 9q34.12 were also consistent in the Taiwanese. We found two new independent loci on 6p21.32, rs401775 in SKIV2L gene and rs9267798 in TNXB gene. We also found two suggestive novel Taiwanese-specific loci near the TPRS1 gene on 8q23.3 and in the TMED3 gene on 15q25.1. This study identified both common and unique oral cancer susceptibility loci in the Taiwanese as compared to populations of European descent and shed significant light on the etiology of oral cancer in Taiwan.
Collapse
|
16
|
Cloutier JM, Ingram DR, Wani K, Lazar AJ, Wang WL. Frequent TRPS1 expression in synovial sarcoma is associated with SS18-SSX fusion oncoprotein activity. Hum Pathol 2022; 130:88-94. [PMID: 36162599 DOI: 10.1016/j.humpath.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Synovial sarcoma is an aggressive translocation-associated soft tissue tumor driven by an SS18-SSX fusion oncoprotein. TRPS1 is a recently identified marker for breast carcinoma, but less is known about its expression in other tumor types. We encountered a case of synovial sarcoma showing strong and diffuse expression of TRPS1. To better characterize this observation, we examined the immunohistochemical expression of TRPS1 in 165 cases of synovial sarcoma, including 70 primary, 21 recurrent, and 74 metastatic tumors, using tissue microarrays. TRPS1 expression was observed in 86% of cases. Among the positive cases, TRPS1 labeled >50% of tumor cells in 57% of cases, and staining intensity was strong or moderate in 68%. Metastatic tumors more frequently demonstrated strong and diffuse TRPS1 expression compared to primary tumors. To understand the mechanism of TRPS1 expression, we interrogated publicly available gene expression and ChIP-seq datasets and found that TRPS1 transcript levels are increased in synovial sarcoma compared to other soft tissue sarcomas. Data from ChIP-seq experiments showed enrichment of SS18-SSX protein at the TRPS1 locus and co-localization with RNA pol II. The TRPS1 locus is also enriched in several histone modifications associated with active transcription. In functional knockdown data, repression of SS18::SSX in synovial sarcoma cell lines is associated with reduced TRPS1 transcript levels, further supporting a model whereby TRPS1 expression is mediated, at least in part, by the SS18-SSX fusion oncoprotein. Knowledge of TRPS1 expression in synovial sarcoma may help avoid potential diagnostic pitfalls in the immunohistochemical workup of tumors.
Collapse
Affiliation(s)
- Jeffrey M Cloutier
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
17
|
Zhao Y, Yu L, Zhang S, Su X, Zhou X. Extrachromosomal circular DNA: Current status and future prospects. eLife 2022; 11:81412. [PMID: 36256570 PMCID: PMC9578701 DOI: 10.7554/elife.81412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a double-stranded DNA molecule found in various organisms, including humans. In the past few decades, the research on eccDNA has mainly focused on cancers and their associated diseases. Advancements in modern omics technologies have reinvigorated research on eccDNA and shed light on the role of these molecules in a range of diseases and normal cell phenotypes. In this review, we first summarize the formation of eccDNA and its modes of action in eukaryotic cells. We then outline eccDNA as a disease biomarker and reveal its regulatory mechanism. We finally discuss the future prospects of eccDNA, including basic research and clinical application. Thus, with the deepening of understanding and exploration of eccDNAs, they hold great promise in future biomedical research and clinical translational application.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linchan Yu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|
19
|
Du T, Pan L, Zheng C, Chen K, Yang Y, Chen J, Chao X, Li M, Lu J, Luo R, Zhang J, Wu Y, He J, Jiang D, Sun P. Matrix Gla protein (MGP), GATA3, and TRPS1: a novel diagnostic panel to determine breast origin. Breast Cancer Res 2022; 24:70. [PMID: 36284362 PMCID: PMC9598034 DOI: 10.1186/s13058-022-01569-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Metastatic breast carcinoma is commonly considered during differential diagnosis when metastatic disease is detected in females. In addition to the tumor morphology and documented clinical history, sensitive and specific immunohistochemical (IHC) markers such as GCDFP-15, mammaglobin, and GATA3 are helpful for determining breast origin. However, these markers are reported to show lower sensitivity in certain subtypes, such as triple-negative breast cancer (TNBC). Materials and methods Using bioinformatics analyses, we identified a potential diagnostic panel to determine breast origin: matrix Gla protein (MGP), transcriptional repressor GATA binding 1 (TRPS1), and GATA-binding protein 3 (GATA3). We compared MGP, TRPS1, and GATA3 expression in different subtypes of breast carcinoma of (n = 1201) using IHC. As a newly identified marker, MGP expression was also evaluated in solid tumors (n = 2384) and normal tissues (n = 1351) from different organs. Results MGP and TRPS1 had comparable positive expression in HER2-positive (91.2% vs. 92.0%, p = 0.79) and TNBC subtypes (87.3% vs. 91.2%, p = 0.18). GATA3 expression was lower than MGP (p < 0.001) or TRPS1 (p < 0.001), especially in HER2-positive (77.0%, p < 0.001) and TNBC (43.3%, p < 0.001) subtypes. TRPS1 had the highest positivity rate (97.9%) in metaplastic TNBCs, followed by MGP (88.6%), while only 47.1% of metaplastic TNBCs were positive for GATA3. When using MGP, GATA3, and TRPS1 as a novel IHC panel, 93.0% of breast carcinomas were positive for at least two markers, and only 9 cases were negative for all three markers. MGP was detected in 36 cases (3.0%) that were negative for both GATA3 and TRPS1. MGP showed mild-to-moderate positive expression in normal hepatocytes, renal tubules, as well as 31.1% (99/318) of hepatocellular carcinomas. Rare cases (0.6–5%) had focal MGP expression in renal, ovarian, lung, urothelial, and cholangiocarcinomas. Conclusions Our findings suggest that MGP is a newly identified sensitive IHC marker to support breast origin. MGP, TRPS1, and GATA3 could be applied as a reliable diagnostic panel to determine breast origin in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01569-1.
Collapse
Affiliation(s)
- Tian Du
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Breast Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Lu Pan
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Chengyou Zheng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Keming Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Yuanzhong Yang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Jiewei Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Xue Chao
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Mei Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Jiabin Lu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Rongzhen Luo
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Jinhui Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Yu Wu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Jiehua He
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Dongping Jiang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Medical Imaging, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Peng Sun
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| |
Collapse
|