1
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
2
|
Bagattin A, Tammaccaro SL, Chiral M, Makinistoglu MP, Zimmermann N, Lerner J, Garbay S, Kuperwasser N, Pontoglio M. HNF1β bookmarking involves Topoisomerase 1 activation and DNA topology relaxation in mitotic chromatin. Cell Rep 2024; 43:114805. [PMID: 39388351 DOI: 10.1016/j.celrep.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
HNF1β (HNF1B) is a transcription factor frequently mutated in patients with developmental renal disease. It binds to mitotic chromatin and reactivates gene expression after mitosis, a phenomenon referred to as bookmarking. Using a crosslinking method that circumvents the artifacts of formaldehyde, we demonstrate that HNF1β remains associated with chromatin in a sequence-specific way in both interphase and mitosis. We identify an HNF1β-interacting protein, BTBD2, that enables the interaction and activation of Topoisomerase 1 (TOP1) exclusively during mitosis. Our study identifies a shared microhomology domain between HNF1β and TOP1, where a mutation, found in "maturity onset diabetes of the young" patients, disrupts their interaction. Importantly, HNF1β recruits TOP1 and induces DNA relaxation around HNF1β mitotic chromatin sites, elucidating its crucial role in chromatin remodeling and gene reactivation after mitotic exit. These findings shed light on how HNF1β reactivates target gene expression after mitosis, providing insights into its crucial role in maintenance of cellular identity.
Collapse
Affiliation(s)
- Alessia Bagattin
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| | - Salvina Laura Tammaccaro
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Magali Chiral
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Munevver Parla Makinistoglu
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Zimmermann
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Jonathan Lerner
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Serge Garbay
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Kuperwasser
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Marco Pontoglio
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
3
|
Belew MD, Michael WM. Transcriptome analysis in C. elegans early embryos upon depletion of the Topoisomerase 2/condensin II axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618010. [PMID: 39464072 PMCID: PMC11507951 DOI: 10.1101/2024.10.17.618010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In C. elegans , the chromosome compaction factors topoisomerase 2 (TOP-2) and condensin II have been shown to globally repress transcription in multiple contexts. Our group has previously reported that TOP-2 and condensin II repress transcription in the C. elegans germline during larval starvation, oocyte maturation, and in germline progenitor cells of the early embryo. Here, we assess the transcriptome of early embryos treated with RNAi against TOP-2 and the condensin II subunit CAPG-2. We found 144 upregulated and 172 downregulated genes. Further analysis showed that the upregulated genes are mostly somatic, with a host of neuronal cells present in our tissue enrichment analysis.
Collapse
|
4
|
Fernández-Mimbrera MÁ, Salido S, Marchal JA, Alejo-Armijo A. Tracking Selective Internalization and Intracellular Dynamics of Modified Chitosan Polymeric Micelles of Interest in Primary Hyperoxaluria Diseases. ACS OMEGA 2024; 9:39503-39512. [PMID: 39346832 PMCID: PMC11425826 DOI: 10.1021/acsomega.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
Primary hyperoxalurias (PHs) represent rare diseases associated with disruptions in glyoxylate metabolism within hepatocytes. Impaired glyoxylate detoxification in PH patients results in its accumulation and subsequent conversion into oxalate, a process catalyzed by the hepatic lactate dehydrogenase A enzyme (hLDHA). Targeting this enzyme selectively in the liver using small organic molecules emerges as a potential therapeutic strategy for PH. However, achieving selective hepatic inhibition of hLDHA poses challenges, requiring precise delivery of potential inhibitors into hepatocytes to mitigate adverse effects in other tissues. Our recent efforts focused on the design of polymeric micelle nanocarriers tailored for the selective transport and release of hLDHA inhibitors into liver tissues. In this study, we synthesized and assessed the internalization and disaggregation dynamics of chitosan-based polymeric micelles in both hepatic and nonhepatic cell models using live-cell imaging. Our findings indicate that lactonolactone residues confer internalization capacity to the micelles upon exposure to cells. Moreover, we demonstrated the intracellular disaggregation capacity of these nanocarriers facilitated by the cystamine redox-sensitive linker attached to the polymer. Importantly, no cytotoxic effects were observed throughout the experimental time frame. Finally, our results underscore the higher selectivity of these nanocarriers for hepatic HepG2 cells compared to other nonhepatic cell models.
Collapse
Affiliation(s)
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|
5
|
Jalan M, Sharma A, Pei X, Weinhold N, Buechelmaier ES, Zhu Y, Ahmed-Seghir S, Ratnakumar A, Di Bona M, McDermott N, Gomez-Aguilar J, Anderson KS, Ng CKY, Selenica P, Bakhoum SF, Reis-Filho JS, Riaz N, Powell SN. RAD52 resolves transcription-replication conflicts to mitigate R-loop induced genome instability. Nat Commun 2024; 15:7776. [PMID: 39237529 PMCID: PMC11377823 DOI: 10.1038/s41467-024-51784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Collisions of the transcription and replication machineries on the same DNA strand can pose a significant threat to genomic stability. These collisions occur in part due to the formation of RNA-DNA hybrids termed R-loops, in which a newly transcribed RNA molecule hybridizes with the DNA template strand. This study investigated the role of RAD52, a known DNA repair factor, in preventing collisions by directing R-loop formation and resolution. We show that RAD52 deficiency increases R-loop accumulation, exacerbating collisions and resulting in elevated DNA damage. Furthermore, RAD52's ability to interact with the transcription machinery, coupled with its capacity to facilitate R-loop dissolution, highlights its role in preventing collisions. Lastly, we provide evidence of an increased mutational burden from double-strand breaks at conserved R-loop sites in human tumor samples, which is increased in tumors with low RAD52 expression. In summary, this study underscores the importance of RAD52 in orchestrating the balance between replication and transcription processes to prevent collisions and maintain genome stability.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
| | - Aman Sharma
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Xin Pei
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Nils Weinhold
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | | | | | - Melody Di Bona
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Niamh McDermott
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Kyrie S Anderson
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, CH, 3008, Switzerland
- SIB, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
- AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
- Molecular Biology Program, MSKCC, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Li S, Vemuri C, Chen C. DNA topology: A central dynamic coordinator in chromatin regulation. Curr Opin Struct Biol 2024; 87:102868. [PMID: 38878530 PMCID: PMC11283972 DOI: 10.1016/j.sbi.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/29/2024]
Abstract
Double helical DNA winds around nucleosomes, forming a beads-on-a-string array that further contributes to the formation of high-order chromatin structures. The regulatory components of the chromatin, interacting intricately with DNA, often exploit the topological tension inherent in the DNA molecule. Recent findings shed light on, and simultaneously complicate, the multifaceted roles of DNA topology (also known as DNA supercoiling) in various aspects of chromatin regulation. Different studies may emphasize the dynamics of DNA topological tension across different scales, interacting with diverse chromatin factors such as nucleosomes, nucleic acid motors that propel DNA-tracking processes, and DNA topoisomerases. In this review, we consolidate recent studies and establish connections between distinct scientific discoveries, advancing our current understanding of chromatin regulation mediated by the supercoiling tension of the double helix. Additionally, we explore the implications of DNA topology and DNA topoisomerases in human diseases, along with their potential applications in therapeutic interventions.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charan Vemuri
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Zhang H, Sun Y, Saha S, Saha LK, Pongor LS, Dhall A, Pommier Y. Genome-wide Mapping of Topoisomerase Binding Sites Suggests Topoisomerase 3α (TOP3A) as a Reader of Transcription-Replication Conflicts (TRC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599352. [PMID: 38948815 PMCID: PMC11212928 DOI: 10.1101/2024.06.17.599352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Both transcription and replication can take place simultaneously on the same DNA template, potentially leading to transcription-replication conflicts (TRCs) and topological problems. Here we asked which topoisomerase(s) is/are the best candidate(s) for sensing TRC. Genome-wide topoisomerase binding sites were mapped in parallel for all the nuclear topoisomerases (TOP1, TOP2A, TOP2B, TOP3A and TOP3B). To increase the signal to noise ratio (SNR), we used ectopic expression of those topoisomerases in H293 cells followed by a modified CUT&Tag method. Although each topoisomerase showed distinct binding patterns, all topoisomerase binding signals positively correlated with gene transcription. TOP3A binding signals were suppressed by DNA replication inhibition. This was also observed but to a lesser extent for TOP2A and TOP2B. Hence, we propose the involvement of TOP3A in sensing both head-on TRCs (HO-TRCs) and co-directional TRCs (CD-TRCs). In which case, the TOP3A signals appear concentrated within the promoters and first 20 kb regions of the 5' -end of genes, suggesting the prevalence of TRCs and the recruitment of TOP3A in the 5'-regions of transcribed and replicated genes.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yilun Sun
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sourav Saha
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Liton Kumar Saha
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lorinc S Pongor
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anjali Dhall
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Carnie CJ, Acampora AC, Bader AS, Erdenebat C, Zhao S, Bitensky E, van den Heuvel D, Parnas A, Gupta V, D'Alessandro G, Sczaniecka-Clift M, Weickert P, Aygenli F, Götz MJ, Cordes J, Esain-Garcia I, Melidis L, Wondergem AP, Lam S, Robles MS, Balasubramanian S, Adar S, Luijsterburg MS, Jackson SP, Stingele J. Transcription-coupled repair of DNA-protein cross-links depends on CSA and CSB. Nat Cell Biol 2024; 26:797-810. [PMID: 38600235 PMCID: PMC11098753 DOI: 10.1038/s41556-024-01391-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/29/2024] [Indexed: 04/12/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Aleida C Acampora
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aldo S Bader
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elnatan Bitensky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fatih Aygenli
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Cao H, Zhang Y, Song T, Xia L, Cai Y, Kapranov P. Common occurrence of hotspots of single strand DNA breaks at transcriptional start sites. BMC Genomics 2024; 25:368. [PMID: 38622509 PMCID: PMC11017599 DOI: 10.1186/s12864-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND We recently developed two high-resolution methods for genome-wide mapping of two prominent types of DNA damage, single-strand DNA breaks (SSBs) and abasic (AP) sites and found highly complex and non-random patterns of these lesions in mammalian genomes. One salient feature of SSB and AP sites was the existence of single-nucleotide hotspots for both lesions. RESULTS In this work, we show that SSB hotspots are enriched in the immediate vicinity of transcriptional start sites (TSSs) in multiple normal mammalian tissues, however the magnitude of enrichment varies significantly with tissue type and appears to be limited to a subset of genes. SSB hotspots around TSSs are enriched on the template strand and associate with higher expression of the corresponding genes. Interestingly, SSB hotspots appear to be at least in part generated by the base-excision repair (BER) pathway from the AP sites. CONCLUSIONS Our results highlight complex relationship between DNA damage and regulation of gene expression and suggest an exciting possibility that SSBs at TSSs might function as sensors of DNA damage to activate genes important for DNA damage response.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Yufei Zhang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Tianrong Song
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, 361000, Xiamen, China
| | - Ye Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
10
|
Fukute J, Maki K, Adachi T. The nucleolar shell provides anchoring sites for DNA untwisting. Commun Biol 2024; 7:83. [PMID: 38263258 PMCID: PMC10805735 DOI: 10.1038/s42003-023-05750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.
Collapse
Affiliation(s)
- Jumpei Fukute
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
| | - Koichiro Maki
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
| | - Taiji Adachi
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
11
|
Terrón-Bautista J, Martínez-Sánchez MDM, López-Hernández L, Vadusevan AA, García-Domínguez M, Williams RS, Aguilera A, Millán-Zambrano G, Cortés-Ledesma F. Topological regulation of the estrogen transcriptional response by ZATT-mediated inhibition of TOP2B activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576640. [PMID: 38328138 PMCID: PMC10849543 DOI: 10.1101/2024.01.22.576640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Human type-II topoisomerases, TOP2A and TOP2B, remove transcription associated DNA supercoiling, thereby affecting gene-expression programs, and have recently been associated with 3D genome architecture. Here, we study the regulatory roles of TOP2 paralogs in response to estrogen, which triggers an acute transcriptional induction that involves rewiring of genome organization. We find that, whereas TOP2A facilitates transcription, as expected for a topoisomerase, TOP2B limits the estrogen response. Consistent with this, TOP2B activity is locally downregulated upon estrogen treatment to favor the establishment and stabilization of regulatory chromatin contacts, likely through an accumulation of DNA supercoiling. We show that estrogen-mediated inhibition of TOP2B requires estrogen receptor α (ERα), a non-catalytic function of TOP2A, and the action of the atypical SUMO-ligase ZATT. This mechanism of topological transcriptional-control, which may be shared by additional gene-expression circuits, highlights the relevance of DNA topoisomerases as central actors of genome dynamics.
Collapse
Affiliation(s)
- José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | | | - Laura López-Hernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Ananda Ayyappan Vadusevan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - R. Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Lead contact
| |
Collapse
|
12
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
13
|
Ruan X, Hu K, Zhang X. PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing. Nat Commun 2023; 14:3275. [PMID: 37280234 DOI: 10.1038/s41467-023-39054-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
RNA-binding proteins (RBPs) are essential for gene regulation, but it remains a challenge to identify their RNA targets across cell types. Here we present PIE-Seq to investigate Protein-RNA Interaction with dual-deaminase Editing and Sequencing by conjugating C-to-U and A-to-I base editors to RBPs. We benchmark PIE-Seq and demonstrate its sensitivity in single cells, its application in the developing brain, and its scalability with 25 human RBPs. Bulk PIE-Seq identifies canonical binding features for RBPs such as PUM2 and NOVA1, and nominates additional target genes for most tested RBPs such as SRSF1 and TDP-43/TARDBP. Homologous RBPs frequently edit similar sequences and gene sets in PIE-Seq while different RBP families show distinct targets. Single-cell PIE-PUM2 uncovers comparable targets to bulk samples and applying PIE-PUM2 to the developing mouse neocortex identifies neural-progenitor- and neuron-specific target genes such as App. In summary, PIE-Seq provides an orthogonal approach and resource to uncover RBP targets in mice and human cells.
Collapse
Affiliation(s)
- Xiangbin Ruan
- Department of Human Genetics and The Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Kaining Hu
- Department of Human Genetics and The Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Xiaochang Zhang
- Department of Human Genetics and The Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Iglesias-Ortega L, Megías-Fernández C, Domínguez-Giménez P, Jimeno-González S, Rivero S. Cell consequences of loss of function of the epigenetic factor EHMT1. Cell Signal 2023:110734. [PMID: 37257768 DOI: 10.1016/j.cellsig.2023.110734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
EHMT1 is an epigenetic factor with histone methyltransferase activity that appears mutated in Kleefstra syndrome, a neurodevelopmental genetic disorder characterized by developmental delay, intellectual disability, and autistic-like features. Despite recent progress in the study of the function of this gene and the molecular etiology of the disease, our knowledge of how EHMT1 haploinsufficiency causes Kleefstra syndrome is still very limited. Here, we show that EHMT1 depletion in RPE1 cells leads to alterations in the morphology and distribution of different subcellular structures, such as the Golgi apparatus, the lysosomes and different cell adhesion components. EHMT1 downregulation also increases centriolar satellites detection, which may indicate a role for EHMT1 in centrosome functioning. Furthermore, the migration process is also altered in EHMT1 depleted cells, which show reduced migration capacity. We consider that the described phenotypes could open new possibilities for understanding the functional impact of EHMT1 haploinsufficiency in Kleefstra syndrome, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in this neurodevelopmental disorder. This knowledge could be relevant not only for the treatment of this syndrome, but also for other neurodevelopmental conditions that could share similar deregulated cellular pathways.
Collapse
Affiliation(s)
- Lucía Iglesias-Ortega
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Clara Megías-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Paloma Domínguez-Giménez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sabrina Rivero
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
15
|
Su S, Xue Y, Lee SK, Zhang Y, Fan J, De S, Sharov A, Wang W. A dual-activity topoisomerase complex promotes both transcriptional activation and repression in response to starvation. Nucleic Acids Res 2023; 51:2415-2433. [PMID: 36794732 PMCID: PMC10018333 DOI: 10.1093/nar/gkad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Topoisomerases are required to release topological stress generated by RNA polymerase II (RNAPII) during transcription. Here, we show that in response to starvation, the complex of topoisomerase 3b (TOP3B) and TDRD3 can enhance not only transcriptional activation, but also repression, which mimics other topoisomerases that can also alter transcription in both directions. The genes enhanced by TOP3B-TDRD3 are enriched with long and highly-expressed ones, which are also preferentially stimulated by other topoisomerases, suggesting that different topoisomerases may recognize their targets through a similar mechanism. Specifically, human HCT116 cells individually inactivated for TOP3B, TDRD3 or TOP3B topoisomerase activity, exhibit similarly disrupted transcription for both starvation-activated genes (SAGs) and starvation-repressed genes (SRGs). Responding to starvation, both TOP3B-TDRD3 and the elongating form of RNAPII exhibit concomitantly increased binding to TOP3B-dependent SAGs, at binding sites that overlap. Notably, TOP3B inactivation decreases the binding of elongating RNAPII to TOP3B-dependent SAGs while increased it to SRGs. Furthermore, TOP3B-ablated cells display reduced transcription of several autophagy-associated genes and autophagy per se. Our data suggest that TOP3B-TDRD3 can promote both transcriptional activation and repression by regulating RNAPII distribution. In addition, the findings that it can facilitate autophagy may account for the shortened lifespan of Top3b-KO mice.
Collapse
Affiliation(s)
- Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
16
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
17
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
18
|
Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer. SCIENCE ADVANCES 2022; 8:eadd4920. [PMID: 36322662 PMCID: PMC9629710 DOI: 10.1126/sciadv.add4920] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 06/09/2023]
Abstract
Type II topoisomerases (TOP2) are conserved regulators of chromatin topology that catalyze reversible DNA double-strand breaks (DSBs) and are essential for maintaining genomic integrity in diverse dynamic processes such as transcription, replication, and cell division. While controlled TOP2-mediated DSBs are an elegant solution to topological constraints of DNA, DSBs also contribute to the emergence of chromosomal translocations and mutations that drive cancer. The central importance of TOP2 enzymes as frontline chemotherapeutic targets is well known; however, their precise biological functions and impact in cancer development are still poorly understood. In this review, we provide an updated overview of TOP2A and TOP2B in the regulation of chromatin topology and transcription, and discuss the recent discoveries linking TOP2 activities with cancer pathogenesis.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Delgado-Chaves FM, Martínez-García PM, Herrero-Ruiz A, Gómez-Vela F, Divina F, Jimeno-González S, Cortés-Ledesma F. Data of transcriptional effects of the merbarone-mediated inhibition of TOP2. Data Brief 2022; 44:108499. [PMID: 35983130 PMCID: PMC9379499 DOI: 10.1016/j.dib.2022.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Type II DNA topoisomerases relax topological stress by transiently gating DNA passage in a controlled cut-and-reseal mechanism that affects both DNA strands. Therefore, they are essential to overcome topological problems associated with DNA metabolism. Their aberrant activity results in the generation of DNA double-strand breaks, which can seriously compromise cell survival and genome integrity. Here, we profile the transcriptome of human-telomerase-immortalized retinal pigment epithelial 1 (RPE-1) cells when treated with merbarone, a drug that catalytically inhibits type II DNA topoisomerases. We performed RNA-Seq after 4 and 8 h of merbarone treatment and compared transcriptional profiles versus untreated samples. We report raw sequencing data together with lists of gene counts and differentially expressed genes.
Collapse
Affiliation(s)
- Fernando M. Delgado-Chaves
- Division of Computer Science, Pablo de Olavide University, Seville ES-41013, Spain
- Corresponding authors.
| | - Pedro Manuel Martínez-García
- Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), University of Seville - CSIC - Pablo de Olavide University, Seville ES-41092 Spain
| | - Andrés Herrero-Ruiz
- Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), University of Seville - CSIC - Pablo de Olavide University, Seville ES-41092 Spain
- Topology and DNA breaks Group, Spanish National Cancer Research Center (CNIO), Madrid ES-28029, Spain
| | - Francisco Gómez-Vela
- Division of Computer Science, Pablo de Olavide University, Seville ES-41013, Spain
| | - Federico Divina
- Division of Computer Science, Pablo de Olavide University, Seville ES-41013, Spain
| | - Silvia Jimeno-González
- Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), University of Seville - CSIC - Pablo de Olavide University, Seville ES-41092 Spain
| | - Felipe Cortés-Ledesma
- Topology and DNA breaks Group, Spanish National Cancer Research Center (CNIO), Madrid ES-28029, Spain
- Corresponding authors.
| |
Collapse
|
20
|
Abstract
TOP1 CAD-seq enables mapping of TOP1 sites of covalent engagement with DNA. The procedure depends upon enrichment of DNA-covalent adducts using chaotropic salts and immunoprecipitation with an antibody specific for TOP1. Here, we describe a step-by-step protocol compatible with Illumina sequencing and bioinformatic pipeline for preliminary data analysis. Compared to other approaches for the genomic study of topoisomerases, TOP1 CAD-seq provides information about active TOP1 engaged on the DNA, taking advantage of low background due to absence of crosslinking. For complete details on the use and execution of this protocol, please refer to Das et al. (2022). TOP1 CAD-seq maps sites of topoisomerase 1 catalytic engagement with the DNA The absence of a cross-linking step reduces the background signal The method is high throughput and takes no longer than a regular ChIP-seq protocol The method can be used as a proxy to assess the level of supercoiling in the genome
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
21
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
22
|
Cao H, Zhang Y, Cai Y, Tang L, Gao F, Xu D, Kapranov P. Hotspots of single-strand DNA “breakome” are enriched at transcriptional start sites of genes. Front Mol Biosci 2022; 9:895795. [PMID: 36046604 PMCID: PMC9420937 DOI: 10.3389/fmolb.2022.895795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023] Open
Abstract
Single-strand breaks (SSBs) represent one of the most common types of DNA damage, yet not much is known about the genome landscapes of this type of DNA lesions in mammalian cells. Here, we found that SSBs are more likely to occur in certain positions of the human genome—SSB hotspots—in different cells of the same cell type and in different cell types. We hypothesize that the hotspots are likely to represent biologically relevant breaks. Furthermore, we found that the hotspots had a prominent tendency to be enriched in the immediate vicinity of transcriptional start sites (TSSs). We show that these hotspots are not likely to represent technical artifacts or be caused by common mechanisms previously found to cause DNA cleavage at promoters, such as apoptotic DNA fragmentation or topoisomerase type II (TOP2) activity. Therefore, such TSS-associated hotspots could potentially be generated using a novel mechanism that could involve preferential cleavage at cytosines, and their existence is consistent with recent studies suggesting a complex relationship between DNA damage and regulation of gene expression.
Collapse
|
23
|
Su S, Xue Y, Sharov A, Zhang Y, Lee SK, Martindale J, Li W, Ku WL, Zhao K, De S, Shen W, Sen P, Gorospe M, Xu D, Wang W. A dual-activity topoisomerase complex regulates mRNA translation and turnover. Nucleic Acids Res 2022; 50:7013-7033. [PMID: 35748872 PMCID: PMC9262614 DOI: 10.1093/nar/gkac538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Topoisomerase 3β (TOP3B) and TDRD3 form a dual-activity topoisomerase complex that interacts with FMRP and can change the topology of both DNA and RNA. Here, we investigated the post-transcriptional influence of TOP3B and associated proteins on mRNA translation and turnover. First, we discovered that in human HCT116 colon cancer cells, knock-out (KO) of TOP3B had similar effects on mRNA turnover and translation as did TDRD3-KO, while FMRP-KO resulted in rather distinct effects, indicating that TOP3B had stronger coordination with TDRD3 than FMRP in mRNA regulation. Second, we identified TOP3B-bound mRNAs in HCT116 cells; we found that while TOP3B did not directly influence the stability or translation of most TOP3B target mRNAs, it stabilized a subset of target mRNAs but had a more complex effect on translation-enhancing for some mRNAs whereas reducing for others. Interestingly, a point mutation that specifically disrupted TOP3B catalytic activity only partially recapitulated the effects of TOP3B-KO on mRNA stability and translation, suggesting that the impact of TOP3B on target mRNAs is partly linked to its ability to change topology of mRNAs. Collectively, our data suggest that TOP3B-TDRD3 can regulate mRNA translation and turnover by mechanisms that are dependent and independent of topoisomerase activity.
Collapse
Affiliation(s)
- Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 1000871, China
| | - Wai Lim Ku
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 1000871, China
| | - Weidong Wang
- To whom correspondence should be addressed. Tel: +1 410 454 8418; Fax: +1 410 558 8331.
| |
Collapse
|
24
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
25
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
26
|
Das SK, Kuzin V, Cameron DP, Sanford S, Jha RK, Nie Z, Rosello MT, Holewinski R, Andresson T, Wisniewski J, Natsume T, Price DH, Lewis BA, Kouzine F, Levens D, Baranello L. MYC assembles and stimulates topoisomerases 1 and 2 in a "topoisome". Mol Cell 2021; 82:140-158.e12. [PMID: 34890565 DOI: 10.1016/j.molcel.2021.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/11/2021] [Accepted: 11/13/2021] [Indexed: 12/25/2022]
Abstract
High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Suzanne Sanford
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Zuqin Nie
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Marta Trullols Rosello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ronald Holewinski
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Thorkell Andresson
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, National Cancer Institute, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Brian A Lewis
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA.
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
27
|
Bunch H, Jeong J, Kang K, Jo DS, Cong ATQ, Kim D, Kim D, Cho DH, Lee YM, Chen BPC, Schellenberg MJ, Calderwood SK. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ. Open Biol 2021; 11:210221. [PMID: 34610268 PMCID: PMC8492178 DOI: 10.1098/rsob.210221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea,School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaehyeon Jeong
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Anh T. Q. Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donguk Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|