1
|
Bayer KU, Giese KP. A revised view of the role of CaMKII in learning and memory. Nat Neurosci 2025; 28:24-34. [PMID: 39558039 DOI: 10.1038/s41593-024-01809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a fundamental role in learning and possibly also in memory. However, current mechanistic models require fundamental revision. CaMKII autophosphorylation at Thr286 (pThr286) does not provide the molecular basis for long-term memory, as long believed. Instead, pThr286 mediates the signal processing required for induction of several distinct forms of synaptic plasticity, including Hebbian long-term potentiation and depression and non-Hebbian behavioral timescale synaptic plasticity. We discuss (i) the molecular computations by which CaMKII supports these diverse plasticity mechanisms, (ii) alternative CaMKII mechanisms that may contribute to the maintenance phase of LTP and (iii) the relationship of these mechanisms to behavioral learning and memory.
Collapse
Affiliation(s)
- Karl Ulrich Bayer
- Department of Pharmacology and Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Chien CT, Puhl H, Vogel SS, Molloy JE, Chiu W, Khan S. Hub stability in the calcium calmodulin-dependent protein kinase II. Commun Biol 2024; 7:766. [PMID: 38918547 PMCID: PMC11199487 DOI: 10.1038/s42003-024-06423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The calcium calmodulin protein kinase II (CaMKII) is a multi-subunit ring assembly with a central hub formed by the association domains. There is evidence for hub polymorphism between and within CaMKII isoforms, but the link between polymorphism and subunit exchange has not been resolved. Here, we present near-atomic resolution cryogenic electron microscopy (cryo-EM) structures revealing that hubs from the α and β isoforms, either standalone or within an β holoenzyme, coexist as 12 and 14 subunit assemblies. Single-molecule fluorescence microscopy of Venus-tagged holoenzymes detects intermediate assemblies and progressive dimer loss due to intrinsic holoenzyme lability, and holoenzyme disassembly into dimers upon mutagenesis of a conserved inter-domain contact. Molecular dynamics (MD) simulations show the flexibility of 4-subunit precursors, extracted in-silico from the β hub polymorphs, encompassing the curvature of both polymorphs. The MD explains how an open hub structure also obtained from the β holoenzyme sample could be created by dimer loss and analysis of its cryo-EM dataset reveals how the gap could open further. An assembly model, considering dimer concentration dependence and strain differences between polymorphs, proposes a mechanism for intrinsic hub lability to fine-tune the stoichiometry of αβ heterooligomers for their dynamic localization within synapses in neurons.
Collapse
Affiliation(s)
- Chih-Ta Chien
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 208952, USA
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 208952, USA
| | - Justin E Molloy
- The Francis Crick Institute, London, UK
- CMCB, Warwick Medical School, Coventry, CV4 7AL, UK
| | - Wah Chiu
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Shahid Khan
- Molecular Biology Consortium @ Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Brown CN, Bayer KU. Studying CaMKII: Tools and standards. Cell Rep 2024; 43:113982. [PMID: 38517893 PMCID: PMC11088445 DOI: 10.1016/j.celrep.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca2+ signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration. Perhaps most importantly, there are now three mechanistically distinct classes of specific CaMKII inhibitors, and their combined use enables the interrogation of CaMKII functions in a manner that is powerful and sophisticated yet also accessible. This review aims to provide guidelines for the interpretation of the results obtained with these tools, with careful consideration of their direct and indirect effects.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Miller AP, O'Neill SE, Lampi KJ, Reichow SL. The α-crystallin Chaperones Undergo a Quasi-ordered Co-aggregation Process in Response to Saturating Client Interaction. J Mol Biol 2024; 436:168499. [PMID: 38401625 PMCID: PMC11001518 DOI: 10.1016/j.jmb.2024.168499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones vital to cellular proteostasis, preventing protein aggregation events linked to various human diseases including cataract. The α-crystallins, αA-crystallin (αAc) and αB-crystallin (αBc), represent archetypal sHSPs that exhibit complex polydispersed oligomeric assemblies and rapid subunit exchange dynamics. Yet, our understanding of how this plasticity contributes to chaperone function remains poorly understood. Using biochemical and biophysical analyses combined with single-particle electron microscopy (EM), we examined structural changes in αAc, αBc and native heteromeric lens α-crystallins (αLc) in their apo-states and at varying degree of chaperone saturation leading to co-aggregation, using lysozyme and insulin as model clients. Quantitative single-particle analysis unveiled a continuous spectrum of oligomeric states formed during the co-aggregation process, marked by significant client-triggered expansion and quasi-ordered elongation of the sHSP oligomeric scaffold, whereby the native cage-like sHSP assembly displays a directional growth to accommodate saturating conditions of client sequestration. These structural modifications culminated in an apparent amorphous collapse of chaperone-client complexes, resulting in the creation of co-aggregates capable of scattering visible light. Intriguingly, these co-aggregates maintain internal morphological features of highly elongated sHSP oligomers with striking resemblance to polymeric α-crystallin species isolated from aged lens tissue. This mechanism appears consistent across αAc, αBc and αLc, albeit with varying degrees of susceptibility to client-induced co-aggregation. Importantly, our findings suggest that client-induced co-aggregation follows a distinctive mechanistic and quasi-ordered trajectory, distinct from a purely amorphous process. These insights reshape our understanding of the physiological and pathophysiological co-aggregation processes of α-crystallins, carrying potential implications for a pathway toward cataract formation.
Collapse
Affiliation(s)
- Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Susan E O'Neill
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Kirsten J Lampi
- Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
5
|
Özden C, MacManus S, Adafia R, Samkutty A, Torres‐Ocampo AP, Garman SC, Stratton MM. Ca2+/CaM dependent protein kinase II (CaMKII)α and CaMKIIβ hub domains adopt distinct oligomeric states and stabilities. Protein Sci 2024; 33:e4960. [PMID: 38501502 PMCID: PMC10962473 DOI: 10.1002/pro.4960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a multidomain serine/threonine kinase that plays important roles in the brain, heart, muscle tissue, and eggs/sperm. The N-terminal kinase and regulatory domain is connected by a flexible linker to the C-terminal hub domain. The hub domain drives the oligomeric organization of CaMKII, assembling the kinase domains into high local concentration. Previous structural studies have shown multiple stoichiometries of the holoenzyme as well as the hub domain alone. Here, we report a comprehensive study of the hub domain stoichiometry and stability in solution. We solved two crystal structures of the CaMKIIβ hub domain that show 14-mer (3.1 Å) and 16-mer (3.4 Å) assemblies. Both crystal structures were determined from crystals grown in the same drop, which suggests that CaMKII oligomers with different stoichiometries likely coexist. To further interrogate hub stability, we employed mass photometry and temperature denaturation studies of CaMKIIβ and CaMKIIα hubs, which highlight major differences between these highly similar domains. We created a dimeric CaMKIIβ hub unit using rational mutagenesis, which is significantly less stable than the oligomer. Both hub domains populate an intermediate during unfolding. We found that multiple CaMKIIβ hub stoichiometries are present in solution and that larger oligomers are more stable. CaMKIIα had a narrower distribution of molecular weight and was distinctly more stable than CaMKIIβ.
Collapse
Affiliation(s)
- Can Özden
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Sara MacManus
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Ruth Adafia
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Ana P. Torres‐Ocampo
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Scott C. Garman
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
6
|
Miller AP, O'Neill SE, Lampi KJ, Reichow SL. The α-crystallin chaperones undergo a quasi-ordered co-aggregation process in response to saturating client interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553435. [PMID: 37645910 PMCID: PMC10462102 DOI: 10.1101/2023.08.15.553435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones vital to cellular proteostasis, preventing protein aggregation events linked to various human diseases including cataract. The α-crystallins, αA-crystallin (αAc) and αB-crystallin (αBc), represent archetypal sHSPs that exhibit complex polydispersed oligomeric assemblies and rapid subunit exchange dynamics. Yet, our understanding of how this plasticity contributes to chaperone function remains poorly understood. This study investigates structural changes in αAc and αBc during client sequestration under varying degree of chaperone saturation. Using biochemical and biophysical analyses combined with single-particle electron microscopy (EM), we examined αAc and αBc in their apo-states and at various stages of client-induced co-aggregation, using lysozyme as a model client. Quantitative single-particle analysis unveiled a continuous spectrum of oligomeric states formed during the co-aggregation process, marked by significant client-triggered expansion and quasi-ordered elongation of the sHSP scaffold. These structural modifications culminated in an apparent amorphous collapse of chaperone-client complexes, resulting in the creation of co-aggregates capable of scattering visible light. Intriguingly, these co-aggregates maintain internal morphological features of highly elongated sHSP scaffolding with striking resemblance to polymeric α-crystallin species isolated from aged lens tissue. This mechanism appears consistent across both αAc and αBc, albeit with varying degrees of susceptibility to client-induced co-aggregation. Importantly, our findings suggest that client-induced co-aggregation follows a distinctive mechanistic and quasi-ordered trajectory, distinct from a purely amorphous process. These insights reshape our understanding of the physiological and pathophysiological co-aggregation processes of sHSPs, carrying potential implications for a pathway toward cataract formation.
Collapse
Affiliation(s)
- Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Susan E O'Neill
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Kirsten J Lampi
- Integrative Biosciences, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
7
|
Lučić I, Héluin L, Jiang PL, Castro Scalise AG, Wang C, Franz A, Heyd F, Wahl MC, Liu F, Plested AJR. CaMKII autophosphorylation can occur between holoenzymes without subunit exchange. eLife 2023; 12:e86090. [PMID: 37566455 PMCID: PMC10468207 DOI: 10.7554/elife.86090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
The dodecameric protein kinase CaMKII is expressed throughout the body. The alpha isoform is responsible for synaptic plasticity and participates in memory through its phosphorylation of synaptic proteins. Its elaborate subunit organization and propensity for autophosphorylation allow it to preserve neuronal plasticity across space and time. The prevailing hypothesis for the spread of CaMKII activity, involving shuffling of subunits between activated and naive holoenzymes, is broadly termed subunit exchange. In contrast to the expectations of previous work, we found little evidence for subunit exchange upon activation, and no effect of restraining subunits to their parent holoenzymes. Rather, mass photometry, crosslinking mass spectrometry, single molecule TIRF microscopy and biochemical assays identify inter-holoenzyme phosphorylation (IHP) as the mechanism for spreading phosphorylation. The transient, activity-dependent formation of groups of holoenzymes is well suited to the speed of neuronal activity. Our results place fundamental limits on the activation mechanism of this kinase.
Collapse
Affiliation(s)
- Iva Lučić
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Léonie Héluin
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Pin-Lian Jiang
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Alejandro G Castro Scalise
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Cong Wang
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Andreas Franz
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Markus C Wahl
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular CrystallographyBerlinGermany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- Charité-Universitätsmedizin BerlinBerlinGermany
| | - Andrew JR Plested
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- NeuroCure, Charité UniversitätsmedizinBerlinGermany
| |
Collapse
|
8
|
Ameen SS, Griem-Krey N, Dufour A, Hossain MI, Hoque A, Sturgeon S, Nandurkar H, Draxler DF, Medcalf RL, Kamaruddin MA, Lucet IS, Leeming MG, Liu D, Dhillon A, Lim JP, Basheer F, Zhu HJ, Bokhari L, Roulston CL, Paradkar PN, Kleifeld O, Clarkson AN, Wellendorph P, Ciccotosto GD, Williamson NA, Ang CS, Cheng HC. N-Terminomic Changes in Neurons During Excitotoxicity Reveal Proteolytic Events Associated With Synaptic Dysfunctions and Potential Targets for Neuroprotection. Mol Cell Proteomics 2023; 22:100543. [PMID: 37030595 PMCID: PMC10199228 DOI: 10.1016/j.mcpro.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIβ (CaMKIIβ). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIβ, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.
Collapse
Affiliation(s)
- S Sadia Ameen
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nane Griem-Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - M Iqbal Hossain
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia; Department of Pharmacology and Toxicology, University of Alabama, Birmingham, Alabama, USA
| | - Ashfaqul Hoque
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sharelle Sturgeon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Dominik F Draxler
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mohd Aizuddin Kamaruddin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Isabelle S Lucet
- Chemical Biology Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dazhi Liu
- Department of Neurology, School of Medicine, University of California, Davis, California, USA
| | - Amardeep Dhillon
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jet Phey Lim
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Faiza Basheer
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Laita Bokhari
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Carli L Roulston
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, East Geelong, Victoria, Australia
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giuseppe D Ciccotosto
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Heung-Chin Cheng
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Franz A, Weber AI, Preußner M, Dimos N, Stumpf A, Ji Y, Moreno-Velasquez L, Voigt A, Schulz F, Neumann A, Kuropka B, Kühn R, Urlaub H, Schmitz D, Wahl MC, Heyd F. Branch point strength controls species-specific CAMK2B alternative splicing and regulates LTP. Life Sci Alliance 2023; 6:6/3/e202201826. [PMID: 36543542 PMCID: PMC9772828 DOI: 10.26508/lsa.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation and functionality of species-specific alternative splicing has remained enigmatic to the present date. Calcium/calmodulin-dependent protein kinase IIβ (CaMKIIβ) is expressed in several splice variants and plays a key role in learning and memory. Here, we identify and characterize several primate-specific CAMK2B splice isoforms, which show altered kinetic properties and changes in substrate specificity. Furthermore, we demonstrate that primate-specific CAMK2B alternative splicing is achieved through branch point weakening during evolution. We show that reducing branch point and splice site strengths during evolution globally renders constitutive exons alternative, thus providing novel mechanistic insight into cis-directed species-specific alternative splicing regulation. Using CRISPR/Cas9, we introduce a weaker, human branch point sequence into the mouse genome, resulting in strongly altered Camk2b splicing in the brains of mutant mice. We observe a strong impairment of long-term potentiation in CA3-CA1 synapses of mutant mice, thus connecting branch point-controlled CAMK2B alternative splicing with a fundamental function in learning and memory.
Collapse
Affiliation(s)
- Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Nicole Dimos
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Laura Moreno-Velasquez
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Voigt
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederic Schulz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Mass Spectrometry Core Facility (BioSupraMol), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar Schmitz
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
10
|
Cai Q, Chen X, Zhu S, Nicoll RA, Zhang M. Differential roles of CaMKII isoforms in phase separation with NMDA receptors and in synaptic plasticity. Cell Rep 2023; 42:112146. [PMID: 36827181 DOI: 10.1016/j.celrep.2023.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Calcium calmodulin-dependent kinase II (CaMKII) is critical for synaptic transmission and plasticity. Two major isoforms of CaMKII, CaMKIIα and CaMKIIβ, play distinct roles in synaptic transmission and long-term potentiation (LTP) with unknown mechanisms. Here, we show that the length of the unstructured linker between the kinase domain and the oligomerizing hub determines the ability of CaMKII to rescue the basal synaptic transmission and LTP defects caused by removal of both CaMKIIα and CaMKIIβ (double knockout [DKO]). Remarkably, although CaMKIIβ binds to GluN2B with a comparable affinity as CaMKIIα does, only CaMKIIα with the short linker forms robust dense clusters with GluN2B via phase separation. Lengthening the linker of CaMKIIα with unstructured "Gly-Gly-Ser" repeats impairs its phase separation with GluN2B, and the mutant enzyme cannot rescue the basal synaptic transmission and LTP defects of DKO mice. Our results suggest that the phase separation capacity of CaMKII with GluN2B is critical for its cellular functions in the brain.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Heath, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiumin Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shihan Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Nguyen TA, Puhl HL, Hines K, Liput DJ, Vogel SS. Binary-FRET reveals transient excited-state structure associated with activity-dependent CaMKII - NR2B binding and adaptation. Nat Commun 2022; 13:6335. [PMID: 36284097 PMCID: PMC9596428 DOI: 10.1038/s41467-022-33795-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Synaptic functions are mediated and modulated by a coordinated choreography of protein conformational changes and interactions in response to intracellular calcium dynamics. Time-lapse Förster resonance energy transfer can be used to study the dynamics of both conformational changes and protein-protein interactions simultaneously under physiological conditions if two resonance energy transfer reactions can be multiplexed. Binary-FRET is a technique developed to independently monitor the dynamics of calcium-calmodulin dependent protein kinase-II catalytic-domain pair separation in the holoenzyme, and its role in establishing activity-dependent holoenzyme affinity for the NR2B binding fragment of the N-methyl-D-aspartate receptor. Here we show that a transient excited-state intermediate exists where paired catalytic-domains in the holoenzyme first separate prior to subsequent NR2B association. Additionally, at non-saturating free calcium concentrations, our multiplexed approach reveals that the holoenzyme exhibits a biochemical form of plasticity, calcium dependent adaptation of T-site ligand binding affinity.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA
| | - Henry L Puhl
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA
| | - Kirk Hines
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA
| | - Daniel J Liput
- Laboratory for Integrative Neuroscience, NIAAA, NIH, Bethesda, USA
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA.
| |
Collapse
|
13
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
14
|
Brown CN, Rumian NL, Tullis JE, Coultrap SJ, Bayer KU. Aβ-induced synaptic impairments require CaMKII activity that is stimulated by indirect signaling events. iScience 2022; 25:104368. [PMID: 35620430 PMCID: PMC9127195 DOI: 10.1016/j.isci.2022.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Aβ bears homology to the CaMKII regulatory domain, and peptides derived from this domain can bind and disrupt the CaMKII holoenzyme, suggesting that Aβ could have a similar effect. Notably, Aβ impairs the synaptic CaMKII accumulation that is mediated by GluN2B binding, which requires CaMKII assembly into holoenzymes. Furthermore, this Aβ-induced impairment is prevented by CaMKII inhibitors that should also inhibit the putative direct Aβ binding. However, our study did not find any evidence for direct effects of Aβ on CaMKII: Aβ did not directly disrupt CaMKII holoenzymes, GluN2B binding, T286 autophosphorylation, or kinase activity in vitro. Most importantly, in neurons, the Aβ-induced impairment of CaMKII synaptic accumulation was prevented by an ATP-competitive CaMKII inhibitor that would not interfere with the putative direct Aβ binding. Together, our results indicate that synaptic Aβ effects are not mediated by direct binding to CaMKII, but instead require CaMKII activation via indirect signaling events. Aβ and the CaMKII regulatory domain share a region of homology Suppression of CaMKII movement in neurons by Aβ requires CaMKII activity Aβ does not directly affect CaMKII activity, T286 phosphorylation, or GluN2B binding Thus, the Aβ effects on CaMKII in neurons require indirect signaling mechanisms
Collapse
|