1
|
Nakatsu G, Ko D, Michaud M, Franzosa EA, Morgan XC, Huttenhower C, Garrett WS. Virulence factor discovery identifies associations between the Fic gene family and Fap2 + fusobacteria in colorectal cancer microbiomes. mBio 2025; 16:e0373224. [PMID: 39807864 PMCID: PMC11796403 DOI: 10.1128/mbio.03732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Fusobacterium is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates Fusobacterium adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2. Here, we analyze genomes of Fusobacterium colon tumor isolates and find that a family of post-translational modification enzymes containing Fic domains is associated with Fap2 positivity in these strains. We demonstrate that Fic family genes expand with the presence of Fap2 in the fusobacterial pangenome. Through comparative genomic analysis, we find that Fap2+ Fusobacteriota are highly enriched with Fic gene families compared to other cancer-associated and human gut microbiome bacterial taxa. Using a global data set of CRC shotgun metagenomes, we show that fusobacterial Fic and Fap2 genes frequently co-occur in the fecal microbiomes of individuals with late-stage CRC. We further characterize specific Fic gene families harbored by Fap2+ Fusobacterium animalis genomes and detect recombination events and elements of horizontal gene transfer via synteny analysis of Fic gene loci. Exposure of a F. animalis strain to a colon adenocarcinoma cell line increases gene expression of fusobacterial Fic and virulence-associated adhesins. Finally, we demonstrate that Fic proteins are synthesized by F. animalis as Fic peptides are detectable in F. animalis monoculture supernatants. Taken together, our study uncovers Fic genes as potential virulence factors in Fap2+ fusobacterial genomes.IMPORTANCEAccumulating data support that bacterial members of the intra-tumoral microbiota critically influence colorectal cancer progression. Yet, relatively little is known about non-adhesin fusobacterial virulence factors that may influence carcinogenesis. Our genomic analysis and expression assays in fusobacteria identify Fic domain-containing genes, well-studied virulence factors in pathogenic bacteria, as potential fusobacterial virulence features. The Fic family proteins that we find are encoded by fusobacteria and expressed by Fusobacterium animalis merit future investigation to assess their roles in colorectal cancer development and progression.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Duhyun Ko
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Eric A. Franzosa
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xochitl C. Morgan
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Xin Y, Yu Y, Wu M, Su M, Elsabahy M, Qu X, Gao H. Tumor and intratumoral pathogen cascade-targeting photothermal nanotherapeutics for boosted immunotherapy of colorectal cancer. J Control Release 2025; 379:574-591. [PMID: 39832745 DOI: 10.1016/j.jconrel.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy. This nanotherapeutic can in situ generate near infrared-II laser-activatable photothermal agent by reacting with endogenous hydrogen sulfide in CRC. The Schiff bond-tethered hyaluronic acid coating not only facilitates precise localization within CRC but shieldes GalNAc-mediated liver targeting, which can be deshielded upon a slightly acidic TME to anchor Fn by binding to its lectin Fap2. This cascade-targeting nanotherapeutic enables efficacious tumor accumulation and reinforces photothermal therapy (PTT) efficacy. Notably, PTT efficiently induces immunogenic cell death in CRC cells, leading to augmented immunogenicity and CD8+ T cell activation. Meanwhile, synchronous eradication of Fn facilitates M1 macrophage polarization, and promotes intratumoral infiltration of CD8+ T cell by reducing succinic acid level, thereby further boosting antitumor immunity against both primary and distant tumors. Overall, this study involving cascade targeting-reinforced PTT and intratumoral microorganism modulation offers new insight into effective CRC immunotherapy.
Collapse
Affiliation(s)
- Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Mengdi Wu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Meihui Su
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
3
|
Zhou P, G C B, Hu B, Wu C. Development of SacB-based counterselection for efficient allelic exchange in Fusobacterium nucleatum. Microbiol Spectr 2025; 13:e0206624. [PMID: 39611826 PMCID: PMC11705814 DOI: 10.1128/spectrum.02066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Fusobacterium nucleatum, prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective. Under suitable growth conditions, cells carrying a counterselectable gene die, enabling efficient selection of rare, defined allelic exchange mutants. The sacB gene from Bacillus subtilis, encoding levansucrase, is a widely used counterselective marker partly due to the easy availability of sucrose. Yet, its potential application in F. nucleatum genetic study remains untested. We demonstrated that F. nucleatum cells expressing sacB in either a shuttle or suicide plasmid exhibit a lethal sensitivity to supplemental sucrose. Utilizing sucrose counterselection, we created an in-frame deletion of the F. nucleatum tonB gene, a critical gene for energy-dependent transport processes in Gram-negative bacteria, and a precise knock-in of the luciferase gene immediately following the stop codon of the hslO gene, the last gene of a five-gene operon possibly related to the natural competence of F. nucleatum. Post-counterselection with 5% sucrose, chromosomal plasmid loss occurred in all colonies, leading to gene alternations in half of the screened isolates. This sacB-based counterselection technique provides a reliable method for isolating unmarked gene mutations in wild-type F. nucleatum, enriching the toolkit for fusobacterial research.IMPORTANCEInvestigations into Fusobacterium nucleatum's role in related diseases significantly benefit from the strategies of creating unmarked gene mutations, which hinge on using a counterselective marker. Previously, the galk-based allelic exchange method, although effective, faced an inherent limitation-the need for a modified host. This study aims to surmount this limitation by substituting galK with sacB for gene modification in F. nucleatum. Our application of the sacB-based methodology successfully yielded a tonB in-frame deletion mutant and a luciferase gene knock-in at the precise chromosomal location in the wild-type background. The new method augments the existing toolkit for F. nucleatum research and has far-reaching implications due to the easy accessibility to the counterselection compound sucrose. We anticipate its broader adoption in further exploration, thereby reinforcing its critical role in propelling our understanding of F. nucleatum.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Bo Hu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
4
|
Bibek GC, Wu C. The CarSR Two-Component System Directly Controls radD Expression as a Global Regulator that Senses Bacterial Coaggregation in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628403. [PMID: 39713435 PMCID: PMC11661204 DOI: 10.1101/2024.12.13.628403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Two-component systems (TCS) enable bacteria to sense and respond to environmental signals, facilitating rapid adaptation. Fusobacterium nucleatum , a key oral pathobiont, employs the CarSR TCS to modulate coaggregation with various Gram-positive partners by regulating the expression of radD , encoding a surface adhesion protein, as revealed by RNA-Seq analysis. However, the direct regulation of the radD -containing operon ( radABCD ) by the response regulator CarR, the broader CarR regulon, and the signals sensed by this system remain unclear. In this study, chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) identified approximately 161 CarR-enriched loci across the genome and a 17-bp consensus motif that likely serves as the CarR binding site. Notably, one such binding motif was found in the promoter region of the radABCD operon. The interaction of CarR with this binding motif was further validated using electrophoretic mobility shift assays (EMSA), mutagenesis, and DNase I footprinting analyses. Beyond regulating radABCD , CarR directly controls genes involved in fructose and amino acid (cysteine, glutamate, lysine) utilization, underscoring its role as a global regulator in F. nucleatum . Lastly, we discovered that RadD-mediated coaggregation enhances radD expression, and deletion of carS abolished this enhancement, suggesting that coaggregation itself serves as a signal sensed by this TCS. These findings provide new insights into the CarR regulon and the regulation of RadD, elucidating the ecological and pathogenic roles of F. nucleatum in dental plaque formation and disease processes. IMPORTANCE Fusobacterium nucleatum is an essential member of oral biofilms, acting as a bridging organism that connects early and late colonizers, thus driving dental plaque formation. Its remarkable ability to aggregate with diverse bacterial partners is central to its ecological success, yet the mechanisms it senses and responds to these interactions remain poorly understood. This study identifies the CarSR two-component system as a direct regulator of RadD, the primary adhesin mediating coaggregation, and reveals its role in sensing coaggregation as a signal. These findings uncover a novel mechanism by which F. nucleatum dynamically adapts to polymicrobial environments, offering new perspectives on biofilm formation and bacterial communication in complex oral microbial ecosystems.
Collapse
|
5
|
Molteni C, Forni D, Cagliani R, Sironi M. Comparative genomics reveal a novel phylotaxonomic order in the genus Fusobacterium. Commun Biol 2024; 7:1102. [PMID: 39244637 PMCID: PMC11380691 DOI: 10.1038/s42003-024-06825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Fusobacteria have been associated to different diseases, including colorectal cancer (CRC), but knowledge of which taxonomic groups contribute to specific conditions is incomplete. We analyzed the genetic diversity and relationships within the Fusobacterium genus. We report recent and ancestral recombination in core genes, indicating that fusobacteria have mosaic genomes and emphasizing that taxonomic demarcation should not rely on single genes/gene regions. Across databases, we found ample evidence of species miss-classification and of undescribed species, which are both expected to complicate disease association. By focusing on a lineage that includes F. periodonticum/pseudoperiodonticum and F. nucleatum, we show that genomes belong to four modern populations, but most known species/subspecies emerged from individual ancestral populations. Of these, the F. periodonticum/pseudoperiodonticum population experienced the lowest drift and displays the highest genetic diversity, in line with the less specialized distribution of these bacteria in oral sites. A highly drifted ancestral population instead contributed genetic ancestry to a new species, which includes genomes classified within the F. nucleatum animalis diversity in a recent CRC study. Thus, evidence herein calls for a re-analysis of F. nucleatum animalis features associated to CRC. More generally, our data inform future molecular profiling approaches to investigate the epidemiology of Fusobacterium-associated diseases.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
6
|
Zhou P, Bibek GC, Hu B, Wu C. Development of SacB-based Counterselection for Efficient Allelic Exchange in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608263. [PMID: 39229080 PMCID: PMC11370447 DOI: 10.1101/2024.08.16.608263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fusobacterium nucleatum , prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective. Under suitable growth conditions, cells carrying a counterselectable gene die, enabling efficient selection of rare defined allelic exchange mutants. The sacB gene from Bacillus subtilis , encoding levansucrase, is a widely used counterselective marker partly due to the easy availability of sucrose. Yet, its potential application in F. nucleatum genetic study remains untested. We demonstrated that F. nucleatum cells expressing sacB in either a shuttle or suicide plasmid exhibit a lethal sensitivity to supplemental sucrose. Utilizing sucrose counterselection, we created an in-frame deletion of the F. nucleatum tonB gene, a critical gene for energy-dependent transport processes in Gram-negative bacteria, and a precise knockin of the luciferase gene immediately following the stop codon of the hslO gene, the last gene of a five-gene operon possible related to the natural competence of F. nucleatum . Post counterselection with 5% sucrose, chromosomal plasmid loss occurred in all colonies, leading to gene alternations in half of the screened isolates. This sacB -based counterselection technique provides a reliable method for isolating unmarked gene mutations in wild-type F. nucleatum , enriching the toolkit for fusobacterial research. IMPORTANCE Investigations into Fusobacterium nucleatum 's role in related diseases significantly benefit from the strategies of creating unmarked gene mutations, which hinge on using a counterselective marker. Previously, the galk -based allelic exchange method, while effective, faced an inherent limitation - the need for a modified host. This study aims to surmount this limitation by substituting galK with sacB for gene modification in F. nucleatum . Our application of the sacB -based methodology successfully yielded a tonB in-frame deletion mutant and a luciferase gene knockin at the precise chromosomal location in the wild-type background. The new method augments the existing toolkit for F. nucleatum research and has far-reaching implications due to the easy accessibility to the counterselection compound sucrose. We anticipate its broader adoption in further exploration, thereby reinforcing its critical role in propelling our understanding of F. nucleatum .
Collapse
|
7
|
Chen Z, Huang L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions. Adv Drug Deliv Rev 2024; 209:115319. [PMID: 38643839 PMCID: PMC11459907 DOI: 10.1016/j.addr.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The microbiome has emerged as a significant biomarker and modulator in cancer development and treatment response. Recent research highlights the notable role of Fusobacterium nucleatum (F. nucleatum) in various tumor types, including breast, colorectal, esophageal, gastric, pancreatic, and lung cancers. Accumulating evidence suggests that the local microbial community forms an integral component of the tumor microenvironment, with bacterial communities within tumors displaying specificity to tumor types. Mechanistic investigations indicate that tumor-associated microbiota can directly influence tumor initiation, progression, and responses to chemotherapy or immunotherapy. This article presents a comprehensive review of microbial communities especially F. nucleatum in tumor tissue, exploring their roles and underlying mechanisms in tumor development, treatment, and prevention. When the tumor-associated F. nucleatum is killed, the host immune response is activated to recognize tumor cells. Bacteria epitopes restricted by the host antigens, can be identified for future anti-bacteria/tumor vaccine development.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States
| | - Leaf Huang
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
8
|
Udayasuryan B, Zhou Z, Ahmad RN, Sobol P, Deng C, Nguyen TTD, Kodikalla S, Morrison R, Goswami I, Slade DJ, Verbridge SS, Lu C. Fusobacterium nucleatum infection modulates the transcriptome and epigenome of HCT116 colorectal cancer cells in an oxygen-dependent manner. Commun Biol 2024; 7:551. [PMID: 38720110 PMCID: PMC11079022 DOI: 10.1038/s42003-024-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Collapse
Affiliation(s)
- Barath Udayasuryan
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Raffae N Ahmad
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Polina Sobol
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Shivanie Kodikalla
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ryan Morrison
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ishan Goswami
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
9
|
Ghosh A, Jaaback K, Boulton A, Wong-Brown M, Raymond S, Dutta P, Bowden NA, Ghosh A. Fusobacterium nucleatum: An Overview of Evidence, Demi-Decadal Trends, and Its Role in Adverse Pregnancy Outcomes and Various Gynecological Diseases, including Cancers. Cells 2024; 13:717. [PMID: 38667331 PMCID: PMC11049087 DOI: 10.3390/cells13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Collapse
Affiliation(s)
- Arunita Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Ken Jaaback
- Hunter New England Centre for Gynecological Cancer, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Angela Boulton
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Michelle Wong-Brown
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Steve Raymond
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Partha Dutta
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| |
Collapse
|
10
|
Guo X, Yu K, Huang R. The ways Fusobacterium nucleatum translocate to breast tissue and contribute to breast cancer development. Mol Oral Microbiol 2024; 39:1-11. [PMID: 38171827 DOI: 10.1111/omi.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer is among the most prevalent malignancies in women worldwide. Epidemiological findings suggested that periodontal diseases may be associated with breast cancer, among which Fusobacterium nucleatum is considered an important cross-participant. In this work, we comprehensively summarize the known mechanisms of how F. nucleatum translocates to, colonizes in mammary tumors, and promotes the carcinogenesis. Specifically, F. nucleatum translocates to mammary tissue through the mammary-intestinal axis, direct nipple contact, and hematogenous transmission. Subsequently, F. nucleatum takes advantage of fusobacterium autotransporter protein 2 to colonize breast cancer and uses virulence factors fusobacterium adhesin A and lipopolysaccharide to promote proliferation. Moreover, the upregulated matrix metalloproteinase-9 induced by F. nucleatum does not only trigger the inflammatory response but also facilitates the tumor-promoting microenvironment. Aside from the pro-inflammatory effect, F. nucleatum may also be engaged in tumor immune evasion, which is achieved through the action of virulence factors on immune checkpoint receptors highly expressed on T cells, natural killer cells, and tumor-infiltrating lymphocytes. Taking breast cancer as an example, more relevant research studies may expand our current knowledge of how oral microbes affect systemic health. Hopefully, exploring these mechanisms in depth could provide new strategies for safer and more effective biologic and targeted therapies targeted at breast cancer.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. mBio 2024; 15:e0175123. [PMID: 38059640 PMCID: PMC10790702 DOI: 10.1128/mbio.01751-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE This paper illuminates the significant question of how the oral commensal Fusobacterium nucleatum adapts to the metabolically changing environments of several extra-oral sites such as placenta and colon to promote various diseases as an opportunistic pathogen. We demonstrate here that the highly conserved Rhodobacter nitrogen-fixation complex, commonly known as Rnf complex, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of this Rnf complex causes global defects in polymicrobial interaction, biofilm formation, cell growth and morphology, hydrogen sulfide production, and ATP synthesis. Targeted metabolomic profiling demonstrates that the loss of this respiratory enzyme significantly diminishes catabolism of numerous amino acids, which negatively impacts fusobacterial virulence as tested in a preterm birth model in mice.
Collapse
Affiliation(s)
- Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Dana Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Martha I. Camacho
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Truc T. Luong
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
12
|
Kotzur R, Kahlon S, Isaacson B, Gamliel M, Charpak-Amikam Y, Lieberman J, Bachrach G, Goldman-Wohl D, Yagel S, Beharier O, Mandelboim O. Pregnancy trained decidual NK cells protect pregnancies from harmful Fusobacterium nucleatum infection. PLoS Pathog 2024; 20:e1011923. [PMID: 38215172 PMCID: PMC10826933 DOI: 10.1371/journal.ppat.1011923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/30/2024] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
Natural killer cells (NKs) found during pregnancy at the maternal-fetal interface named decidual (d)NKs, show signs of education following first pregnancy, resulting in better placentation and fetus-growth, hence termed pregnancy trained dNKs (PTdNKs). Here we show that PTdNKs provide increased protection of the fetus from Fusobacterium nucleatum (FN) infection. We demonstrate that PTdNKs secrete elevated amounts of the bacteriocidal protein granulysin (GNLY) upon incubation with FN compared to dNKs derived from first pregnancies, which leads to increased killing of FN. Furthermore, we showed mechanistically that the GNLY secretion is mediated through the interaction of the FN's Fap2 protein with Gal-GalNAc present on PTdNKs. Finally, we show in vivo, using GNLY-tg mice that enhanced protection of the fetuses from FN infection is observed, as compared to wild type and that this enhance protection is NK cell dependent. Altogether, we show a new function for PTdNKs as protectors of the fetus from bacterial infection.
Collapse
Affiliation(s)
- Rebecca Kotzur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shira Kahlon
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Batya Isaacson
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Moriya Gamliel
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Charpak-Amikam
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children’ Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah-University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah-University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Ofer Beharier
- Department of Obstetrics and Gynecology, Hadassah-University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
13
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Zhang X, Wang Y, Fan R, Zhang L, Li Z, Zhang Y, Zheng W, Wang L, Liu B, Quan C. Quantitative Proteomic Analysis of Outer Membrane Vesicles from Fusobacterium nucleatum Cultivated in the Mimic Cancer Environment. Microbiol Spectr 2023; 11:e0039423. [PMID: 37341631 PMCID: PMC10434195 DOI: 10.1128/spectrum.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Fusobacterium nucleatum is a Gram-negative bacterium that has been identified as an important pathogenic gut bacterium associated with colorectal cancer. Compared with the normal intestine, the pH value of the tumor microenvironment is weakly acidic. The metabolic changes of F. nucleatum in the tumor microenvironment, especially the protein composition of its outer membrane vesicles, remain unclear. Here, we systematically analyzed the effect of environmental pH on the proteome of outer membrane vesicles (OMVs) from F. nucleatum by tandem mass tag (TMT) labeling-high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 991 proteins were identified in acidic OMVs (aOMVs) and neutral OMVs (nOMVs), including known virulence proteins and putative virulence proteins. Finally, 306 upregulated proteins and 360 downregulated proteins were detected in aOMVs, and approximately 70% of the expression of OMV proteins was altered under acidic conditions. A total of 29 autotransporters were identified in F. nucleatum OMVs, and 13 autotransporters were upregulated in aOMVs. Interestingly, three upregulated autotransporters (D5REI9, D5RD69, and D5RBW2) show homology to the known virulence factor Fap2, suggesting that they may be involved in various pathogenic pathways such as the pathway for binding with colorectal cancer cells. Moreover, we found that more than 70% of MORN2 domain-containing proteins may have toxic effects on host cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that a number of proteins were significantly enriched in multiple pathways involving fatty acid synthesis and butyrate synthesis. Seven metabolic enzymes involved in fatty acid metabolism pathways were identified in the proteomic data, of which 5 were upregulated and 2 were downregulated in aOMVs, while 14 metabolic enzymes involved in the butyric acid metabolic pathway were downregulated in aOMVs. In conclusion, we found a key difference in virulence proteins and pathways in the outer membrane vesicles of F. nucleatum between the tumor microenvironment pH and normal intestinal pH, which provides new clues for the prevention and treatment of colorectal cancer. IMPORTANCE F. nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. OMVs have been demonstrated to play key roles in pathogenesis by delivering toxins and other virulence factors to host cells. By employing quantitative proteomic analysis, we found that the pH conditions could affect the protein expression of the outer membrane vesicles of F. nucleatum. Under acidic conditions, approximately 70% of the expression of proteins in OMVs was altered. Several virulence factors, such as type 5a secreted autotransporter (T5aSSs) and membrane occupation and recognition nexus (MORN) domain-containing proteins, were upregulated under acidic conditions. A large number of proteins showed significant enrichments in multiple pathways involving fatty acid synthesis and butyrate synthesis. Proteomics analysis of the outer membrane vesicles secreted by pathogenic bacteria in the acidic tumor microenvironment is of great significance for elucidating the pathogenicity mechanism and its application in vaccine and drug delivery vehicles.
Collapse
Affiliation(s)
- Xuqiang Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Yuxin Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Ruochen Fan
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhuting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Yanmei Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Wei Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Lulu Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Baoquan Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| |
Collapse
|
15
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544113. [PMID: 37398403 PMCID: PMC10312631 DOI: 10.1101/2023.06.13.544113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A prominent oral commensal and opportunistic pathogen, Fusobacterium nucleatum can traverse to extra-oral sites such as placenta and colon, promoting adverse pregnancy outcomes and colorectal cancer, respectively. How this anaerobe sustains many metabolically changing environments enabling its virulence potential remains unclear. Informed by our genome-wide transposon mutagenesis, we report here that the highly conserved Rnf complex, encoded by the rnfCDGEAB gene cluster, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of the Rnf complex via non-polar, in-frame deletion of rnfC (Δ rnfC ) abrogates polymicrobial interaction (or coaggregation) associated with adhesin RadD and biofilm formation. The defect in coaggregation is not due to reduced cell surface of RadD, but rather an increased level of extracellular lysine, which binds RadD and inhibits coaggregation. Indeed, removal of extracellular lysine via washing Δ rnfC cells restores coaggregation, while addition of lysine inhibits this process. These phenotypes mirror that of a mutant (Δ kamAΔ ) that fails to metabolize extracellular lysine. Strikingly, the Δ rnfC mutant is defective in ATP production, cell growth, cell morphology, and expression of the enzyme MegL that produces hydrogen sulfide from cysteine. Targeted metabolic profiling demonstrated that catabolism of many amino acids, including histidine and lysine, is altered in Δ rnfC cells, thereby reducing production of ATP and metabolites including H2S and butyrate. Most importantly, we show that the Δ rnfC mutant is severely attenuated in a mouse model of preterm birth. The indispensable function of Rnf complex in fusobacterial pathogenesis via modulation of bacterial metabolism makes it an attractive target for developing therapeutic intervention.
Collapse
|
16
|
Ellett F, Kacamak NI, Alvarez CR, Oliveira EH, Hasturk H, Paster BJ, Kantarci A, Irimia D. Fusobacterium nucleatum dissemination by neutrophils. J Oral Microbiol 2023; 15:2217067. [PMID: 37283724 PMCID: PMC10240972 DOI: 10.1080/20002297.2023.2217067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies uncovered that Fusobacterium nucleatum (Fn), a common, opportunistic bacterium in the oral cavity, is associated with a growing number of systemic diseases, ranging from colon cancer to Alzheimer's disease. However, the pathological mechanisms responsible for this association are still poorly understood. Here, we leverage recent technological advances to study the interactions between Fn and neutrophils. We show that Fn survives within human neutrophils after phagocytosis. Using in vitro microfluidic devices, we determine that human neutrophils can protect and transport Fn over large distances. Moreover, we validate these observations in vivo by showing that neutrophils disseminate Fn using a zebrafish model. Our data support the emerging hypothesis that bacterial dissemination by neutrophils is a mechanistic link between oral and systemic diseases. Furthermore, our results may ultimately lead to therapeutic approaches that target specific host-bacteria interactions, including the dissemination process.
Collapse
Affiliation(s)
- Felix Ellett
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nazli I. Kacamak
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Carla R. Alvarez
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Eduardo H.S. Oliveira
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Bruce J. Paster
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
GC B, Zhou P, Wu C. HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0009123. [PMID: 37039662 PMCID: PMC10132090 DOI: 10.1128/aem.00091-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
The study of fusobacterial virulence factors has dramatically benefited from the creation of various genetic tools for DNA manipulation, including galK-based counterselection for in-frame deletion mutagenesis in Fusobacterium nucleatum, which was recently developed. However, this method requires a host lacking the galK gene, which is an inherent limitation. To circumvent this limitation, we explored the possibility of using the hicA gene that encodes a toxin consisting of a HicAB toxin-antitoxin module in Fusobacterium periodonticum as a new counterselective marker. Interestingly, the full-length hicA gene is not toxic in F. nucleatum, but a truncated hicA gene version lacking the first six amino acids is functional as a toxin. The toxin expression is driven by an rpsJ promoter and is controlled at its translational level by using a theophylline-responsive riboswitch unit. As a proof of concept, we created markerless in-frame deletions in the fusobacterial adhesin radD gene within the F. nucleatum rad operon and the tnaA gene that encodes the tryptophanase for indole production. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of colonies grown on theophylline-added plates and resulted in in-frame deletions in 50% of the screened isolates. This hicA-based counterselection system provides a robust and reliable counterselection in wild-type background F. nucleatum and should also be adapted for use in other bacteria. IMPORTANCE Fusobacterium nucleatum is an indole-producing human oral anaerobe associated with periodontal diseases, preterm birth, and several cancers. Little is known about the mechanisms of fusobacterial pathogenesis and associated factors, mainly due to the lack of robust genetic tools for this organism. Here, we showed that a mutated hicA gene from Fusobacterium periodonticum expresses an active toxin and was used as a counterselection marker. This hicA-based in-frame deletion system efficiently creates in-frame deletion mutations in the wild-type background of F. nucleatum. This is the first report to use the hicA gene as a counterselection marker in a bacterial genetic study.
Collapse
Affiliation(s)
- Bibek GC
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
18
|
Hong M, Li Z, Liu H, Zheng S, Zhang F, Zhu J, Shi H, Ye H, Chou Z, Gao L, Diao J, Zhang Y, Zhang D, Chen S, Zhou H, Li J. Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles. Cell Host Microbe 2023; 31:798-810.e7. [PMID: 37054714 DOI: 10.1016/j.chom.2023.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that has been associated with the gut microbiota. However, whether and how the gut microbiota plays a pathogenic role in RA remains unexplored. Here, we observed that Fusobacterium nucleatum is enriched in RA patients and positively associated with RA severity. F. nucleatum similarly aggravates arthritis in a mouse model of collagen-induced arthritis (CIA). F. nucleatum outer membrane vesicles (OMVs) containing the virulence determinant FadA translocate into the joints, triggering local inflammatory responses. Specifically, FadA acts on synovial macrophages, resulting in the activation of the Rab5a GTPase involved in vesicle trafficking and inflammatory pathways and YB-1, a key regulator of inflammatory mediators. OMVs containing FadA and heightened Rab5a-YB-1 expression were observed in RA patients compared with controls. These findings suggest a causal role of F. nucleatum in aggravating RA and provide promising therapeutic targets for clinically ameliorating RA.
Collapse
Affiliation(s)
- Mukeng Hong
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Haihua Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Songyuan Zheng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fangling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Hao Shi
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Haixing Ye
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhantu Chou
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Lei Gao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Jianxin Diao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Yang Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Dongxin Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
19
|
Little A, Tangney M, Tunney MM, Buckley NE. Fusobacterium nucleatum: a novel immune modulator in breast cancer? Expert Rev Mol Med 2023; 25:e15. [PMID: 37009688 PMCID: PMC10407221 DOI: 10.1017/erm.2023.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Alexa Little
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Tangney
- Cancer Research, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E. Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Yu X, Shi Y, Yuan R, Chen Z, Dong Q, Han L, Wang L, Zhou J. Microbial dysbiosis in oral squamous cell carcinoma: A systematic review and meta-analysis. Heliyon 2023; 9:e13198. [PMID: 36793959 PMCID: PMC9922960 DOI: 10.1016/j.heliyon.2023.e13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Objective The aim of this study was to summarize previously published data and assess the alterations in the composition of the oral microbiome in OSCC using a systematic review and meta-analysis. Design Electronic databases were systematically searched for studies on the oral microbiome in OSCC published before December 2021. Qualitative assessments of compositional variations at the phylum level were performed. The meta-analysis on abundance changes of bacteria genera was performed via a random-effects model. Results A total of 18 studies involving 1056 participants were included. They consisted of two categories of studies: 1) case-control studies (n = 9); 2) nine studies that compared the oral microbiome between cancerous tissues and paired paracancerous tissues. At the phylum level, enrichment of Fusobacteria but depletion in Actinobacteria and Firmicutes in the oral microbiome was demonstrated in both categories of studies. At the genus level, Fusobacterium showed an increased abundance in OSCC patients (SMD = 0.65, 95% CI: 0.43-0.87, Z = 5.809, P = 0.000) and in cancerous tissues (SMD = 0.54, 95% CI: 0.36-0.72, Z = 5.785, P = 0.000). The abundance of Streptococcus was decreased in OSCC (SMD = -0.46, 95% CI: -0.88-0.04, Z = -2.146, P = 0.032) and in cancerous tissues (SMD = -0.45, 95% CI: -0.78-0.13, Z = -2.726, P = 0.006). Conclusions Disturbances in the interactions between enriched Fusobacterium and depleted Streptococcus may participate in or prompt the occurrence and development of OSCC and could be potential biomarkers for detection of OSCC.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Graduate School of Dalian Medical University, Dalian, 116044, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Yongmei Shi
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Rongtao Yuan
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Linzi Han
- Graduate School of Dalian Medical University, Dalian, 116044, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Jianhua Zhou
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
21
|
Wu X, Xu J, Yang X, Wang D, Xu X. Integrating Transcriptomics and Metabolomics to Explore the Novel Pathway of Fusobacterium nucleatum Invading Colon Cancer Cells. Pathogens 2023; 12:pathogens12020201. [PMID: 36839472 PMCID: PMC9967813 DOI: 10.3390/pathogens12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy with a very high incidence and mortality rate worldwide. Fusobacterium nucleatum bacteria and their metabolites play a role in inducing and promoting CRC; however, no studies on the exchange of information between Fusobacterium nucleatum extracellular vesicles (Fnevs) and CRC cells have been reported. Our research shows that Fusobacterium nucleatum ATCC25586 secretes extracellular vesicles carrying active substances from parental bacteria which are endocytosed by colon cancer cells. Moreover, Fnevs promote the proliferation, migration, and invasion of CRC cells and inhibit apoptosis; they also improve the ability of CRC cells to resist oxidative stress and SOD enzyme activity. The genes differentially expressed after transcriptome sequencing are mostly involved in the positive regulation of tumor cell proliferation. After detecting differential metabolites using liquid chromatography-tandem mass spectrometry, Fnevs were found to promote cell proliferation by regulating amino acid biosynthesis in CRC cells and metabolic pathways such as central carbon metabolism, protein digestion, and uptake in cancer. In summary, this study not only found new evidence of the synergistic effect of pathogenic bacteria and colon cancer tumor cells, but also provides a new direction for the early diagnosis and targeted treatment of colon cancer.
Collapse
Affiliation(s)
- Xinyu Wu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Danping Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-0451-55191827
| |
Collapse
|
22
|
Shahoumi LA, Saleh MHA, Meghil MM. Virulence Factors of the Periodontal Pathogens: Tools to Evade the Host Immune Response and Promote Carcinogenesis. Microorganisms 2023; 11:115. [PMID: 36677408 PMCID: PMC9860638 DOI: 10.3390/microorganisms11010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is the most common chronic, inflammatory oral disease that affects more than half of the population in the United States. The disease leads to destruction of the tooth-supporting tissue called periodontium, which ultimately results in tooth loss if uncured. The interaction between the periodontal microbiota and the host immune cells result in the induction of a non-protective host immune response that triggers host tissue destruction. Certain pathogens have been implicated periodontal disease formation that is triggered by a plethora of virulence factors. There is a collective evidence on the impact of periodontal disease progression on systemic health. Of particular interest, the role of the virulence factors of the periodontal pathogens in facilitating the evasion of the host immune cells and promotion of carcinogenesis has been the focus of many researchers. The aim of this review is to examine the influence of the periodontal pathogens Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum) in the modulation of the intracellular signaling pathways of the host cells in order to evade the host immune response and interfere with normal host cell death and the role of their virulence factors in this regard.
Collapse
Affiliation(s)
- Linah A. Shahoumi
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Muhammad H. A. Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Mohamed M. Meghil
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Enhanced Fusobacterium nucleatum Genetics Using Host DNA Methyltransferases To Bypass Restriction-Modification Systems. J Bacteriol 2022; 204:e0027922. [PMID: 36326270 PMCID: PMC9764991 DOI: 10.1128/jb.00279-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial restriction-modification (R-M) systems are a first-line immune defense against foreign DNA from viruses and other bacteria. While R-M systems are critical in maintaining genome integrity, R-M nucleases unfortunately present significant barriers to targeted genetic modification. Bacteria of the genus Fusobacterium are oral, Gram-negative, anaerobic, opportunistic pathogens that are implicated in the progression and severity of multiple cancers and tissue infections, yet our understanding of their direct roles in disease have been severely hindered by their genetic recalcitrance. Here, we demonstrate a path to overcome these barriers in Fusobacterium by using native DNA methylation as a host mimicry strategy to bypass R-M system cleavage of transformed plasmid DNA. We report the identification, characterization, and successful use of Fusobacterium nucleatum type II and III DNA methyltransferase (MTase) enzymes to produce a multifold increase in gene knockout efficiency in the strain Fusobacterium nucleatum subsp. nucleatum 23726, as well as the first system for efficient gene knockouts and complementations in F. nucleatum subsp. nucleatum 25586. We show plasmid protection can be accomplished in vitro with purified enzymes, as well as in vivo in an Escherichia coli host that constitutively expresses F. nucleatum subsp. nucleatum MTase enzymes. In summary, this proof-of-concept study characterizes specific MTases that are critical for bypassing R-M systems and has enhanced our understanding of enzyme combinations that could be used to genetically modify clinical isolates of Fusobacterium that have thus far been inaccessible to molecular characterization. IMPORTANCE Fusobacterium nucleatum is an oral opportunistic pathogen associated with diseases that include cancer and preterm birth. Our understanding of how this bacterium modulates human disease has been hindered by a lack of genetic systems. Here, we show that F. nucleatum DNA methyltransferase-modified plasmid DNA overcomes the transformation barrier and has allowed the development of a genetic system in a previously inaccessible strain. We present a strategy that could potentially be expanded to enable the genetic modification of highly recalcitrant strains, thereby fostering investigational studies to uncover novel host-pathogen interactions in Fusobacterium.
Collapse
|
24
|
Host mRNA Analysis of Periodontal Disease Patients Positive for Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia. Int J Mol Sci 2022; 23:ijms23179915. [PMID: 36077312 PMCID: PMC9456077 DOI: 10.3390/ijms23179915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a frequent pathology worldwide, with a constantly increasing prevalence. For the optimal management of periodontal disease, there is a need to take advantage of actual technology to understand the bacterial etiology correlated with the pathogenic mechanisms, risk factors and treatment protocols. We analyzed the scientific literature published in the last 5 years regarding the recent applications of mRNA analysis in periodontal disease for the main known bacterial species considered to be the etiological agents: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia. We identified new pathogenic mechanisms, therapeutic target genes and possible pathways to prevent periodontal disease. The mRNA analysis, as well as the important technological progress in recent years, supports its implementation in the routine management of periodontal disease patients.
Collapse
|