1
|
Wang Z, Yuan X, Sun K, Wu F, Liu K, Jin Y, Chervova O, Nie Y, Yang A, Jin Y, Li J, Li Y, Yang F, Wang J, Beck S, Carbone D, Jiang G, Chen K. Optimizing the NGS-based discrimination of multiple lung cancers from the perspective of evolution. NPJ Precis Oncol 2025; 9:14. [PMID: 39809905 PMCID: PMC11733135 DOI: 10.1038/s41698-024-00786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Next-generation sequencing (NGS) offers a promising approach for differentiating multiple primary lung cancers (MPLC) from intrapulmonary metastasis (IPM), though panel selection and clonal interpretation remain challenging. Whole-exome sequencing (WES) data from 80 lung cancer samples were utilized to simulate MPLC and IPM, with various sequenced panels constructed through gene subsampling. Two clonal interpretation approaches primarily applied in clinical practice, MoleA (based on shared mutation comparison) and MoleB (based on probability calculation), were subsequently evaluated. ROC analysis highlighted MoleB's superior performance, especially with the NCCNplus panel (AUC = 0.950 ± 0.002) and pancancer MoleA (AUC = 0.792 ± 0.004). In two independent cohorts (WES cohort, N = 42 and non-WES cohort, N = 94), NGS-based methodologies effectively stratified disease-free survival, with NCCNplus MoleB further predicting prognosis. Phylogenetic analysis further revealed evolutionary distinctions between MPLC and IPM, establishing an optimized NGS-based framework for differentiating multiple lung cancers.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoqiu Yuan
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
- Peking University Health Science Center, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, Hunan, China
- Changsha Thoracic Cancer Prevention and Treatment Technology Innovation Center, Changsha, Hunan, China
| | - Ke Liu
- Berry Oncology Corporation, Beijing, China
| | - Yiruo Jin
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
- Peking University Health Science Center, Beijing, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Yuntao Nie
- China-Japan Friendship Hospital, Beijing, China
| | | | - Yichen Jin
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Li
- Berry Oncology Corporation, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Stephan Beck
- University College London Cancer Institute, University College London, London, UK
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Guanchao Jiang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
2
|
Meng F, Li H, Jin R, Yang A, Luo H, Li X, Wang P, Zhao Y, Chervova O, Tang K, Cheng S, Hu B, Li Y, Sheng J, Yang F, Carbone D, Chen K, Wang J. Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma. Exp Hematol Oncol 2024; 13:106. [PMID: 39468696 PMCID: PMC11514955 DOI: 10.1186/s40164-024-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with lymph node (LN) metastasis is linked to poor prognosis, yet the underlying mechanisms remain largely undefined. This study aimed to elucidate the immunogenomic landscape associated with LN metastasis in LUAD. METHODS We employed broad-panel next-generation sequencing (NGS) on a cohort of 257 surgically treated LUAD patients to delineate the molecular landscape of primary tumors and identify actionable driver-gene alterations. Additionally, we used multiplex immunohistochemistry (mIHC) on a propensity score-matched cohort, which enabled us to profile the immune microenvironment of primary tumors in detail while preserving cellular metaclusters, interactions, and neighborhood functional units. By integrating data from NGS and mIHC, we successfully identified spatial immunogenomic patterns and developed a predictive model for LN metastasis, which was subsequently validated independently. RESULTS Our analysis revealed distinct immunogenomic alteration patterns associated with LN metastasis stages. Specifically, we observed increased mutation frequencies in genes such as PIK3CG and ATM in LN metastatic primary tumors. Moreover, LN positive primary tumors exhibited a higher presence of macrophage and regulatory T cell metaclusters, along with their enriched neighborhood units (p < 0.05), compared to LN negative tumors. Furthermore, we developed a novel predictive model for LN metastasis likelihood, designed to inform non-surgical treatment strategies, optimize personalized therapy plans, and potentially improve outcomes for patients who are ineligible for surgery. CONCLUSIONS This study offers a comprehensive analysis of the genetic and immune profiles in LUAD primary tumors with LN metastasis, identifying key immunogenomic patterns linked to metastatic progression. The predictive model derived from these insights marks a substantial advancement in personalized treatment, underscoring its potential to improve patient management.
Collapse
Affiliation(s)
- Fanjie Meng
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Ruoyi Jin
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Airong Yang
- Kanghui Biotechnology Co., Ltd, Shenyang, China
| | - Hao Luo
- Cancer Center, Daping Hospital Army Medical University, Chongqing, China
| | - Xiao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yaxing Zhao
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Kaicheng Tang
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Sida Cheng
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Jianpeng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Kezhong Chen
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
| |
Collapse
|
3
|
Lu J, Feng Y, Guo K, Sun L, Ruan S, Zhang K. Prognostic value of preoperative circulating tumor DNA in non-small cell lung cancer: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2024; 150:25. [PMID: 38252173 PMCID: PMC10803397 DOI: 10.1007/s00432-023-05550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Several recent studies have reported the increasing application of preoperative circulating tumor DNA (ctDNA) as a biomarker of tumor burden for guiding potential postoperative treatment strategies. METHODS A meta-analysis of prospective/retrospective cohort studies was conducted to compare the prognosis of preoperatively genetically positive and genetically negative NSCLC patients. The endpoints used in the included studies were overall survival (OS) and recurrence-free survival (RFS). The objective of the meta-analysis was to comprehensively explore the prognostic value of preoperative ctDNA for patients with non-small-cell lung cancer (NSCLC) and its significance in guiding postoperative adjuvant therapy (AT) in patients with NSCLC. RESULTS The preliminary analysis identified 1565 studies, among which only 11 studies fulfilled the eligibility criteria and were finally included in the present systematic review and meta-analysis. The statistical results revealed that the expression of preoperative ctDNA was associated with worse RFS (HR = 3.00; 95% CI 2.26-3.98; I2 = 0%) and OS (HR = 2.77; 95% CI 1.67-4.58; I2 = 0%), particularly in lung adenocarcinoma (LUAD) patients (RFS: HR = 3.46; 95% CI 2.37-5.05; I2 = 0%; OS: HR = 3.52; 95% CI 1.91-6.49; I2 = 0%) and patients with I-II stage of NSCLC (RFS: HR = 2.84; 95% CI 1.88-4.29; I2 = 0%; OS: HR = 2.60; 95% CI 1.43-4.74; I2 = 0%). Moreover, compared to patients with negative preoperative ctDNA, patients with positive preoperative ctDNA presented greater survival benefits (HR = 0.39; 95% CI 0.22-0.67; I2 = 2%) from postoperative AT. CONCLUSION The evaluation of the prognostic value of preoperative ctDNA revealed that preoperative ctDNA might be used as a prognostic biomarker for patients with LUAD or those with stage I-II NSCLC. In addition, postoperative AT is recommended for NSCLC patients with positive preoperative ctDNA, regardless of the disease stage and subtype.
Collapse
Affiliation(s)
- Jiamin Lu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yuqian Feng
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
- Anji Traditional Chinese Medical Hospital, Huzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang S, Liu X, Zhou L, Wang K, Shao J, Shi J, Wang X, Mu J, Gao T, Jiang Z, Chen K, Wang C, Wang G. Intelligent prognosis evaluation system for stage I-III resected non-small-cell lung cancer patients on CT images: a multi-center study. EClinicalMedicine 2023; 65:102270. [PMID: 38106558 PMCID: PMC10725055 DOI: 10.1016/j.eclinm.2023.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background Prognosis is crucial for personalized treatment and surveillance suggestion of the resected non-small-cell lung cancer (NSCLC) patients in stage I-III. Although the tumor-node-metastasis (TNM) staging system is a powerful predictor, it is not perfect enough to accurately distinguish all the patients, especially within the same TNM stage. In this study, we developed an intelligent prognosis evaluation system (IPES) using pre-therapy CT images to assist the traditional TNM staging system for more accurate prognosis prediction of resected NSCLC patients. Methods 20,333 CT images of 6371 patients from June 12, 2009 to March 24, 2022 in West China Hospital of Sichuan University, Mianzhu People's Hospital, Peking University People's Hospital, Chengdu Shangjin Nanfu Hospital and Guangan Peoples' Hospital were included in this retrospective study. We developed the IPES based on self-supervised pre-training and multi-task learning, which aimed to predict an overall survival (OS) risk for each patient. We further evaluated the prognostic accuracy of the IPES and its ability to stratify NSCLC patients with the same TNM stage and with the same EGFR genotype. Findings The IPES was able to predict OS risk for stage I-III resected NSCLC patients in the training set (C-index 0.806; 95% CI: 0.744-0.846), internal validation set (0.783; 95% CI: 0.744-0.825) and external validation set (0.817; 95% CI: 0.786-0.849). In addition, IPES performed well in early-stage (stage I) and EGFR genotype prediction. Furthermore, by adopting IPES-based survival score (IPES-score), resected NSCLC patients in the same stage or with the same EGFR genotype could be divided into low- and high-risk subgroups with good and poor prognosis, respectively (p < 0.05 for all). Interpretation The IPES provided a non-invasive way to obtain prognosis-related information from patients. The identification of IPES for resected NSCLC patients with low and high prognostic risk in the same TNM stage or with the same EGFR genotype suggests that IPES have potential to offer more personalized treatment and surveillance suggestion for NSCLC patients. Funding This study was funded by the National Natural Science Foundation of China (grant 62272055, 92259303, 92059203), New Cornerstone Science Foundation through the XPLORER PRIZE, Young Elite Scientists Sponsorship Program by CAST (2021QNRC001), Clinical Medicine Plus X - Young Scholars Project, Peking University, the Fundamental Research Funds for the Central Universities (K.C.), Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences (2021RU002), BUPT Excellent Ph.D. Students Foundation (CX2022104).
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaohong Liu
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Lixin Zhou
- Thoracic Oncology Institute and Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Kai Wang
- College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Jun Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pulmonary and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyu Shi
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xuan Wang
- Thoracic Oncology Institute and Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jiaxing Mu
- Thoracic Oncology Institute and Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Tianrun Gao
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zeyu Jiang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Kezhong Chen
- Thoracic Oncology Institute and Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Chengdi Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pulmonary and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangyu Wang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|
5
|
Wang W, He Y, Yang F, Chen K. Current and emerging applications of liquid biopsy in pan-cancer. Transl Oncol 2023; 34:101720. [PMID: 37315508 DOI: 10.1016/j.tranon.2023.101720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Cancer morbidity and mortality are growing rapidly worldwide and it is urgent to develop a convenient and effective method that can identify cancer patients at an early stage and predict treatment outcomes. As a minimally invasive and reproducible tool, liquid biopsy (LB) offers the opportunity to detect, analyze and monitor cancer in any body fluids including blood, complementing the limitations of tissue biopsy. In liquid biopsy, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are the two most common biomarkers, displaying great potential in the clinical application of pan-cancer. In this review, we expound the samples, targets, and newest techniques in liquid biopsy and summarize current clinical applications in several specific cancers. Besides, we put forward a bright prospect for further exploring the emerging application of liquid biopsy in the field of pan-cancer precision medicine.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China.
| |
Collapse
|
6
|
Markou AN, Londra D, Stergiopoulou D, Vamvakaris I, Potaris K, Pateras IS, Kotsakis A, Georgoulias V, Lianidou E. Preoperative Mutational Analysis of Circulating Tumor Cells (CTCs) and Plasma-cfDNA Provides Complementary Information for Early Prediction of Relapse: A Pilot Study in Early-Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15061877. [PMID: 36980762 PMCID: PMC10047138 DOI: 10.3390/cancers15061877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE We assessed whether preoperativemutational analyses of circulating tumor cells (CTCs) and plasma-cfDNA could be used as minimally invasive biomarkers and as complimentary tools for early prediction of relapse in early-stage non-small -cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Using ddPCR assays, hotspot mutations of BRAF, KRAS, EGFR and PIK3CA were identified in plasma-cfDNA samples and size-based enriched CTCs isolated from the same blood samples of 49 early-stage NSCLC patients before surgery and in a control group of healthy blood donors (n= 22). Direct concordance of the mutational spectrum was further evaluated in 27 patient-matched plasma-cfDNA and CTC-derived DNA in comparison to tissue-derived DNA. RESULTS The prevalence of detectable mutations of the four tested genes was higher in CTC-derived DNA than in the corresponding plasma-cfDNA (38.8% and 24.5%, respectively).The most commonly mutated gene was PIK3CA, in both CTCs and plasma-cfDNA at baseline and at the time of relapse. Direct comparison of the mutation status of selected drug-responsive genes in CTC-derived DNA, corresponding plasma-cfDNA and paired primary FFPE tissues clearly showed the impact of heterogeneity both within a sample type, as well as between different sample components. The incidence of relapse was higher when at least one mutation was detected in CTC-derived DNA or plasma-cfDNA compared with patients in whom no mutation was detected (p =0.023). Univariate analysis showed a significantly higher risk of progression (HR: 2.716; 95% CI, 1.030-7.165; p =0.043) in patients with detectable mutations in plasma-cfDNA compared with patients with undetectable mutations, whereas the hazard ratio was higher when at least one mutation was detected in CTC-derived DNA or plasma-cfDNA (HR: 3.375; 95% CI, 1.098-10.375; p =0.034). CONCLUSIONS Simultaneous mutational analyses of plasma-cfDNA and CTC-derived DNA provided complementary molecular information from the same blood sample and greater diversity in genomic information for cancer treatment and prognosis. The detection of specific mutations in ctDNA and CTCs in patients with early-stage NSCLC before surgery was independently associated with disease recurrence, which represents an important stratification factor for future trials.
Collapse
Affiliation(s)
- A N Markou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - D Londra
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - D Stergiopoulou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - I Vamvakaris
- Department of Pathology; 'Sotiria' General Hospital for Chest Diseases, 11527 Athens, Greece
| | - K Potaris
- Department of Thoracic Surgery, 'Sotiria' General Hospital for Chest Diseases, 11527 Athens, Greece
| | - I S Pateras
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, "ATTIKON" General Hospital of Athens, 12452 Athens, Greece
| | - A Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Thessaly, Greece
| | - V Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, 15562 Cholargos, Greece
| | - E Lianidou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|