1
|
Takagi H, Ito S, Shim JS, Kubota A, Hempton AK, Lee N, Suzuki T, Yang C, Nolan CT, Bubb KL, Alexandre CM, Kurihara D, Sato Y, Tada Y, Kiba T, Pruneda-Paz JL, Queitsch C, Cuperus JT, Imaizumi T. A florigen-expressing subpopulation of companion cells expresses other small proteins and reveals a nitrogen-sensitive FT repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608367. [PMID: 39229231 PMCID: PMC11370445 DOI: 10.1101/2024.08.17.608367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The precise onset of flowering is crucial to ensure successful plant reproduction. The gene FLOWERING LOCUS T (FT) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, FT is induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of the FT-expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression in FT-expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with high FT expression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters of FT and the genes co-expressed with FT in the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogous NIGT1.2 and NIGT1.4 repressed FT expression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependent FT repressors. Taken together, our results demonstrate that major FT-expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jae Sung Shim
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, 52828, South Korea
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Chansie Yang
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Christine T. Nolan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Cristina M. Alexandre
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Jose L. Pruneda-Paz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
2
|
Zhang ZN, Long L, Zhao XT, Shang SZ, Xu FC, Zhao JR, Hu GY, Mi LY, Song CP, Gao W. The dual role of GoPGF reveals that the pigment glands are synthetic sites of gossypol in aerial parts of cotton. THE NEW PHYTOLOGIST 2024; 241:314-328. [PMID: 37865884 DOI: 10.1111/nph.19331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.
Collapse
Affiliation(s)
- Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, China
| | - Ling-Yu Mi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Peng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
3
|
Lee K, Koo D, Park OS, Seo PJ. The HOS1-PIF4/5 module controls callus formation in Arabidopsis leaf explants. PLANT SIGNALING & BEHAVIOR 2023; 18:2261744. [PMID: 37747842 PMCID: PMC10761175 DOI: 10.1080/15592324.2023.2261744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
A two-step plant regeneration has been widely exploited to genetic manipulation and genome engineering in plants. Despite technical importance, understanding of molecular mechanism underlying in vitro plant regeneration remains to be fully elucidated. Here, we found that the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1)-PHYTOCHROME INTERACTING FACTOR 4/5 (PIF4/5) module participates in callus formation. Consistent with the repressive role of HOS1 in PIF transcriptional activation activity, hos1-3 mutant leaf explants exhibited enhanced callus formation, whereas pif4-101 pif5-3 mutant leaf explants showed reduced callus size. The HOS1-PIF4/5 function would be largely dependent on auxin biosynthesis and signaling, which are essential for callus initiation and proliferation. Our findings suggest that the HOS1-PIF4/5 module plays a pivotal role in auxin-dependent callus formation in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Dohee Koo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Ok-Sun Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Ikeda H, Uchikawa T, Kondo Y, Takahashi N, Shishikui T, Watahiki MK, Kubota A, Endo M. Circadian Clock Controls Root Hair Elongation through Long-Distance Communication. PLANT & CELL PHYSIOLOGY 2023; 64:1289-1300. [PMID: 37552691 DOI: 10.1093/pcp/pcad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Plants adapt to periodic environmental changes, such as day and night, by using circadian clocks. Cell division and elongation are primary steps to adjust plant development according to their environments. In Arabidopsis, hypocotyl elongation has been studied as a representative model to understand how the circadian clock regulates cell elongation. However, it remains unknown whether similar phenomena exist in other organs, such as roots, where circadian clocks regulate physiological responses. Here, we show that root hair elongation is controlled by both light and the circadian clock. By developing machine-learning models to automatically analyze the images of root hairs, we found that genes encoding major components of the central oscillator, such as TIMING OF CAB EXPRESSION1 (TOC1) or CIRCADIAN CLOCK ASSOCIATED1 (CCA1), regulate the rhythmicity of root hair length. The partial illumination of light to either shoots or roots suggested that light received in shoots is mainly responsible for the generation of root hair rhythmicity. Furthermore, grafting experiments between wild-type (WT) and toc1 plants demonstrated that TOC1 in shoots is responsible for the generation of root hair rhythmicity. Our results illustrate the combinational effects of long-distance signaling and the circadian clock on the regulation of root hair length.
Collapse
Affiliation(s)
- Hikari Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taiga Uchikawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012 Japan
| | - Takuma Shishikui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Masaaki K Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
5
|
Yu C, Hou K, Zhang H, Liang X, Chen C, Wang Z, Wu Q, Chen G, He J, Bai E, Li X, Du T, Wang Y, Wang M, Feng S, Wang H, Shen C. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1243-1260. [PMID: 37219365 DOI: 10.1111/tpj.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Taxol, which is a widely used important chemotherapeutic agent, was originally isolated from Taxus stem barks. However, little is known about the precise distribution of taxoids and the transcriptional regulation of taxoid biosynthesis across Taxus stems. Here, we used MALDI-IMS analysis to visualize the taxoid distribution across Taxus mairei stems and single-cell RNA sequencing to generate expression profiles. A single-cell T. mairei stem atlas was created, providing a spatial distribution pattern of Taxus stem cells. Cells were reordered using a main developmental pseudotime trajectory which provided temporal distribution patterns in Taxus stem cells. Most known taxol biosynthesis-related genes were primarily expressed in epidermal, endodermal, and xylem parenchyma cells, which caused an uneven taxoid distribution across T. mairei stems. We developed a single-cell strategy to screen novel transcription factors (TFs) involved in taxol biosynthesis regulation. Several TF genes, such as endodermal cell-specific MYB47 and xylem parenchyma cell-specific NAC2 and bHLH68, were implicated as potential regulators of taxol biosynthesis. Furthermore, an ATP-binding cassette family transporter gene, ABCG2, was proposed as a potential taxoid transporter candidate. In summary, we generated a single-cell Taxus stem metabolic atlas and identified molecular mechanisms underpinning the cell-specific transcriptional regulation of the taxol biosynthesis pathway.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ganlin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaxu He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Enhui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinfen Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tingrui Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yifan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
6
|
Huang T, Liu H, Tao JP, Zhang JQ, Zhao TM, Hou XL, Xiong AS, You X. Low light intensity elongates period and defers peak time of photosynthesis: a computational approach to circadian-clock-controlled photosynthesis in tomato. HORTICULTURE RESEARCH 2023; 10:uhad077. [PMID: 37323229 PMCID: PMC10261901 DOI: 10.1093/hr/uhad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/09/2023] [Indexed: 06/17/2023]
Abstract
Photosynthesis is involved in the essential process of transforming light energy into chemical energy. Although the interaction between photosynthesis and the circadian clock has been confirmed, the mechanism of how light intensity affects photosynthesis through the circadian clock remains unclear. Here, we propose a first computational model for circadian-clock-controlled photosynthesis, which consists of the light-sensitive protein P, the core oscillator, photosynthetic genes, and parameters involved in the process of photosynthesis. The model parameters were determined by minimizing the cost function ( [Formula: see text]), which is defined by the errors of expression levels, periods, and phases of the clock genes (CCA1, PRR9, TOC1, ELF4, GI, and RVE8). The model recapitulates the expression pattern of the core oscillator under moderate light intensity (100 μmol m -2 s-1). Further simulation validated the dynamic behaviors of the circadian clock and photosynthetic outputs under low (62.5 μmol m-2 s-1) and normal (187.5 μmol m-2 s-1) intensities. When exposed to low light intensity, the peak times of clock and photosynthetic genes were shifted backward by 1-2 hours, the period was elongated by approximately the same length, and the photosynthetic parameters attained low values and showed delayed peak times, which confirmed our model predictions. Our study reveals a potential mechanism underlying the circadian regulation of photosynthesis by the clock under different light intensities in tomato.
Collapse
Affiliation(s)
- Ting Huang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Jian-Ping Tao
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
- The Institute of Agricultural Information, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jia-Qi Zhang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Tong-Min Zhao
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xi-Lin Hou
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu China
| |
Collapse
|
7
|
Shimadzu S, Furuya T, Kondo Y. Molecular Mechanisms Underlying the Establishment and Maintenance of Vascular Stem Cells in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:274-283. [PMID: 36398989 PMCID: PMC10599399 DOI: 10.1093/pcp/pcac161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The vascular system plays pivotal roles in transporting water and nutrients throughout the plant body. Primary vasculature is established as a continuous strand, which subsequently initiates secondary growth through cell division. Key factors regulating primary and secondary vascular developments have been identified in numerous studies, and the regulatory networks including these factors have been elucidated through omics-based approaches. However, the vascular system is composed of a variety of cells such as xylem and phloem cells, which are commonly generated from vascular stem cells. In addition, the vasculature is located deep inside the plant body, which makes it difficult to investigate the vascular development while distinguishing between vascular stem cells and developing xylem and phloem cells. Recent technical advances in the tissue-clearing method, RNA-seq analysis and tissue culture system overcome these problems by enabling the cell-type-specific analysis during vascular development, especially with a special focus on stem cells. In this review, we summarize the recent findings on the establishment and maintenance of vascular stem cells.
Collapse
Affiliation(s)
- Shunji Shimadzu
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku,
Tokyo, 113-0033 Japan
| | - Tomoyuki Furuya
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- College of Life Sciences, Ritsumeikan
University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
8
|
Uemoto K, Mori F, Yamauchi S, Kubota A, Takahashi N, Egashira H, Kunimoto Y, Araki T, Takemiya A, Ito H, Endo M. Root PRR7 Improves the Accuracy of the Shoot Circadian Clock through Nutrient Transport. PLANT & CELL PHYSIOLOGY 2023; 64:352-362. [PMID: 36631969 PMCID: PMC10016326 DOI: 10.1093/pcp/pcad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The circadian clock allows plants to anticipate and adapt to periodic environmental changes. Organ- and tissue-specific properties of the circadian clock and shoot-to-root circadian signaling have been reported. While this long-distance signaling is thought to coordinate physiological functions across tissues, little is known about the feedback regulation of the root clock on the shoot clock in the hierarchical circadian network. Here, we show that the plant circadian clock conveys circadian information between shoots and roots through sucrose and K+. We also demonstrate that K+ transport from roots suppresses the variance of period length in shoots and then improves the accuracy of the shoot circadian clock. Sucrose measurements and qPCR showed that root sucrose accumulation was regulated by the circadian clock. Furthermore, root circadian clock genes, including PSEUDO-RESPONSE REGULATOR7 (PRR7), were regulated by sucrose, suggesting the involvement of sucrose from the shoot in the regulation of root clock gene expression. Therefore, we performed time-series measurements of xylem sap and micrografting experiments using prr7 mutants and showed that root PRR7 regulates K+ transport and suppresses variance of period length in the shoot. Our modeling analysis supports the idea that root-to-shoot signaling contributes to the precision of the shoot circadian clock. We performed micrografting experiments that illustrated how root PRR7 plays key roles in maintaining the accuracy of shoot circadian rhythms. We thus present a novel directional signaling pathway for circadian information from roots to shoots and propose that plants modulate physiological events in a timely manner through various timekeeping mechanisms.
Collapse
Affiliation(s)
- Kyohei Uemoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Fumito Mori
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Haruki Egashira
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Yumi Kunimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan
| | | |
Collapse
|