1
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2025; 113:42-60. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Zhang Z, Hu H, Xu Z, Shan C, Chen H, Xie K, Wang K, Wang Y, Zhu Q, Yin Y, Cai H, Zhang Y, Li Z. A Chemically Defined Culture for Tooth Reconstitution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404345. [PMID: 39601338 PMCID: PMC11744639 DOI: 10.1002/advs.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/10/2024] [Indexed: 11/29/2024]
Abstract
It is known for decades that dental epithelium and mesenchyme can reconstitute and regenerate a functional tooth. However, the mechanism of tooth reconstitution remains largely unknown due to the lack of an efficient in vitro model. Here, a chemically defined culture system is established that supports tooth reconstitution, further development with normal anatomy, and prompt response to chemical interference in key developmental signaling pathways, termed as toothoids. By using such a system, it is discovered that, during reconstitution, instead of resetting the developmental clock, dental cells reorganized and restarted from the respective developmental stage where they are originally isolated. Moreover, co-stimulation of Activin A and Hedgehog/Smoothened agonist (SAG) sustained the initial induction of tooth fate from the first branchial arch, which would be otherwise quickly lost in culture. Furthermore, activation of Bone Morphogenetic Protein (BMP) signaling triggered efficient enamel formation in the late-stage toothoids, without affecting the normal development of ameloblasts. Together, these data highlight the toothoid culture as a powerful tool to dissect the molecular mechanisms of tooth reconstitution and regeneration.
Collapse
Affiliation(s)
- Ziwei Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hong Hu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhiheng Xu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Ce Shan
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hanyi Chen
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Xie
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yifu Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Qing Zhu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
| | - Yike Yin
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Haoyang Cai
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yunqiu Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhonghan Li
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
- State Key Laboratory of Oral DiseaseWest China Hospital of StomatologySichuan UniversityNo. 14, Section 3, South Renmin RoadChengdu610041China
- Yunnan Key Laboratory of StomatologyDepartment of Pediatric DentistryThe Affiliated Stomatology Hospital of Kunming Medical UniversityKunming Medical UniversityNo. 1088, Mid‐Haiyuan RoadKunming650500China
| |
Collapse
|
3
|
Eldeeb D, Ikeda Y, Hojo H, Ohba S. Unraveling the hidden complexity: Exploring dental tissues through single-cell transcriptional profiling. Regen Ther 2024; 27:218-229. [PMID: 38596822 PMCID: PMC11002530 DOI: 10.1016/j.reth.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Understanding the composition and function of cells constituting tissues and organs is vital for unraveling biological processes. Single-cell analysis has allowed us to move beyond traditional methods of categorizing cell types. This innovative technology allows the transcriptional and epigenetic profiling of numerous individual cells, leading to significant insights into the development, homeostasis, and pathology of various organs and tissues in both animal models and human samples. In this review, we delve into the outcomes of major investigations using single-cell transcriptomics to decipher the cellular composition of mammalian teeth and periodontal tissues. The recent single-cell transcriptome-based studies have traced in detail the dental epithelium-ameloblast lineage and dental mesenchyme lineages in the mouse incisors and the tooth germ of both mice and humans; unraveled the microenvironment, the identity of niche cells, and cellular intricacies in the dental pulp; shed light on the molecular mechanisms orchestrating root formation; and characterized cellular dynamics of the periodontal ligament. Additionally, cellular components in dental pulps were compared between healthy and carious teeth at a single-cell level. Each section of this review contributes to a comprehensive understanding of tooth biology, offering valuable insights into developmental processes, niche cell identification, and the molecular secrets of the dental environment.
Collapse
Affiliation(s)
- Dahlia Eldeeb
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physiology, Division of Biomedical Sciences, Nihon University School of Medicine, Japan
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Egypt
| | - Yuki Ikeda
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan
| |
Collapse
|
4
|
Jiang S, Zhang Y, Zheng H, Zhao K, Yang Y, Lai B, Deng X, Wei Y. Spatiotemporal Molecular Architecture of Lineage Allocation and Cellular Organization in Tooth Morphogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403627. [PMID: 39535354 DOI: 10.1002/advs.202403627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Indexed: 11/16/2024]
Abstract
The remarkable evolution of teeth morphological complexity represents a giant leap for vertebrate. Despite its importance in life history, the understanding of spatiotemporal organization of teeth remains rudimentary. Herein, a high-resolution genome-wide molecular patterning of lineage allocation and cellular organization in tooth morphogenesis is described, constructed by integrating spatial transcriptome and single-cell RNA sequencing. Twelve spatial compartments and seventeen heterogeneous cell clusters linked to tooth morphogenic milestones are identified. Eighty-eight percent of total lineage species has already appeared in the initial tooth bud rather than the generally considered sequential emergence. A previously unrecognized sprouting-like patterning mode of the dental papilla is discovered, that the inner compartment can break through the outer shell compartment to build up the final papilla cusp. Meanwhile, the continuum differentiation hierarchies of enamel knots in time and space are revealed. Furthermore, the regulatory network directing tooth morphogenesis is established, whereby a series of mechanotransduction signals are spatiotemporally involved beyond the well-established classical odontogenesis signals. Finally, genes underlying tooth dysplasia are successfully tracked to highly specific time points and cell types. The results raise the idea that tooth morphogenesis is orchestrated by mechanical niches combined with biochemical signaling.
Collapse
Affiliation(s)
- Shengjie Jiang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Huimin Zheng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Kai Zhao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Binbin Lai
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
- Department of Dermatology, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
5
|
Hu H, Zhao Y, Shan C, Fu H, Cai J, Li Z. Derivation of dental epithelial-like cells from murine embryonic stem cells for tooth regeneration. Stem Cells 2024; 42:945-956. [PMID: 39177656 DOI: 10.1093/stmcls/sxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Teeth are comprised of epithelial and mesenchymal cells, and regenerative teeth rely on the regeneration of both cell types. Transcription factors play a pivotal role in cell fate determination. In this study, we establish fluorescence models based on transcription factors to monitor and analyze dental epithelial cells. Using Pitx2-P2A-copGFP mice, we observe that Pitx2+ epithelial cells, when combined with E14.5 dental mesenchymal cells, are sufficient for the reconstitution of teeth. Induced-Pitx2+ cells, directly isolated from the embryoid body that employs the Pitx2-GFP embryonic stem cell line, exhibit the capacity to differentiate into ameloblasts and develop into teeth when combined with dental mesenchymal cells. The regenerated teeth exhibit a complete structure, including dental pulp, dentin, enamel, and periodontal ligaments. Subsequent exploration via RNA-seq reveals that induced-Pitx2+ cells exhibit enrichment in genes associated with FGF receptors and WNT ligands compared with induced-Pitx2- cells. Our results indicate that both primary Pitx2+ and induced Pitx2+ cells possess the capability to differentiate into enamel-secreting ameloblasts and grow into teeth when combined with dental mesenchymal cells.
Collapse
Affiliation(s)
- Hong Hu
- College of Basic Medical Sciences and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Ce Shan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Huancheng Fu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
6
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2024; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
7
|
Zheng Y, Lu T, Zhang L, Gan Z, Li A, He C, He F, He S, Zhang J, Xiong F. Single-cell RNA-seq analysis of rat molars reveals cell identity and driver genes associated with dental mesenchymal cell differentiation. BMC Biol 2024; 22:198. [PMID: 39256700 PMCID: PMC11389520 DOI: 10.1186/s12915-024-01996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The molecular mechanisms and signaling pathways involved in tooth morphogenesis have been the research focus in the fields of tooth and bone development. However, the cell population in molars at the late bell stage and the mechanisms of hard tissue formation and mineralization remain limited knowledge. RESULTS Here, we used the rat mandibular first and second molars as models to perform single-cell RNA sequencing (scRNA-seq) analysis to investigate cell identity and driver genes related to dental mesenchymal cell differentiation during the late bell hard tissue formation stage. We identified seven main cell types and investigated the heterogeneity of mesenchymal cells. Subsequently, we identified novel cell marker genes, including Pclo in dental follicle cells, Wnt10a in pre-odontoblasts, Fst and Igfbp2 in periodontal ligament cells, and validated the expression of Igfbp3 in the apical pulp. The dynamic model revealed three differentiation trajectories within mesenchymal cells, originating from two types of dental follicle cells and apical pulp cells. Apical pulp cell differentiation is associated with the genes Ptn and Satb2, while dental follicle cell differentiation is associated with the genes Tnc, Vim, Slc26a7, and Fgfr1. Cluster-specific regulons were analyzed by pySCENIC. In addition, the odontogenic function of driver gene TNC was verified in the odontoblastic differentiation of human dental pulp stem cells. The expression of osteoclast differentiation factors was found to be increased in macrophages of the mandibular first molar. CONCLUSIONS Our results revealed the cell heterogeneity of molars in the late bell stage and identified driver genes associated with dental mesenchymal cell differentiation. These findings provide potential targets for diagnosing dental hard tissue diseases and tooth regeneration.
Collapse
Affiliation(s)
- Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aoxi Li
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuandong He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jian Zhang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
8
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Yu Y, Wang K, Wang Z, Cai H, Liao C, Wu Y, Zhang J, Tian W, Liao L. Spatial and temporal gene expression patterns during early human odontogenesis process. Front Bioeng Biotechnol 2024; 12:1437426. [PMID: 39081334 PMCID: PMC11287127 DOI: 10.3389/fbioe.2024.1437426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Studies on odontogenesis are of great importance to treat dental abnormalities and tooth loss. However, the odontogenesis process was poorly studied in humans, especially at the early developmental stages. Here, we combined RNA sequencing (RNA-seq) with Laser-capture microdissection (LCM) to establish a spatiotemporal transcriptomic investigation for human deciduous tooth germs at the crucial developmental stage to offer new perspectives to understand tooth development and instruct tooth regeneration. Several hallmark events, including angiogenesis, ossification, axonogenesis, and extracellular matrix (ECM) organization, were identified during odontogenesis in human dental epithelium and mesenchyme from the cap stage to the early bell stage. ECM played an essential role in the shift of tooth-inductive capability. Species comparisons demonstrated these hallmark events both in humans and mice. This study reveals the hallmark events during odontogenesis, enriching the transcriptomic research on human tooth development at the early stage.
Collapse
Affiliation(s)
- Yejia Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhuo Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyi Zhang
- Chengdu Shiliankangjian Biotechnology Co., Ltd., Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Adasooriya D, Jeong JK, Kyeong M, Kan S, Kim J, Cho ES, Cho SW. Notum regulates the cusp and root patterns in mouse molar. Sci Rep 2024; 14:13633. [PMID: 38871845 PMCID: PMC11176191 DOI: 10.1038/s41598-024-64340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Notum is a direct target of Wnt/β-catenin signaling and plays a crucial role as a Wnt inhibitor within a negative feedback loop. In the tooth, Notum is known to be expressed in odontoblasts, and severe dentin defects and irregular tooth roots have been reported in Notum-deficient mice. However, the precise expression pattern of Notum in early tooth development, and the role of Notum in crown and root patterns remain elusive. In the present study, we identified a novel Notum expression in primary enamel knot (EK), secondary EKs, and dental papilla during tooth development. Notum-deficient mice exhibited enlarged secondary EKs, resulting in broader cusp tips, altered cusp patterns, and reduced concavity in crown outline. These alterations in crown outline led to a reduction in cervical tongue length, thereby inducing root fusion in Notum-deficient mice. Overall, these results suggest that the secondary EK size, regulated by the Wnt/Notum negative feedback loop, has a significant impact on the patterns of crown and root during tooth morphogenesis.
Collapse
Affiliation(s)
- Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shiqi Kan
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jiwoo Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
11
|
Zhao Y, Chen S, Liu X, Chen X, Yang D, Zhang J, Wu D, Zhang Y, Xie S, Li X, Wang Z, Feng B, Qin D, Pei D, Wang Y, Cai J. Single-cell RNA-seq of in vitro expanded cells from cranial neural crest reveals a rare odontogenic sub-population. Cell Prolif 2024; 57:e13598. [PMID: 38196265 DOI: 10.1111/cpr.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Ecto-mesenchymal cells of mammalian tooth germ develops from cranial neural crest cells. These cells are recognised as a promising source for tooth development and regeneration. Despite the high heterogeneity of the neural crest, the cellular landscape of in vitro cultured cranial neural crest cells (CNCCs) for odontogenesis remains unclear. In this study, we used large-scale single-cell RNA sequencing to analyse the cellular landscape of in vitro cultured mouse CNCCs for odontogenesis. We revealed distinct cell trajectories from primary cells to passage 5 and identified a rare Alx3+/Barx1+ sub-population in primary CNCCs that differentiated into two odontogenic clusters characterised by the up-regulation of Pax9/Bmp3 and Lhx6/Dmp1. We successfully induced whole tooth-like structures containing enamel, dentin, and pulp under the mouse renal capsule using in vitro cultured cells from both cranial and trunk neural crests with induction rates of 26.7% and 22.1%, respectively. Importantly, we confirmed only cells sorted from odontogenic path can induce tooth-like structures. Cell cycle and DNA replication genes were concomitantly upregulated in the cultured NCCs of the tooth induction groups. Our data provide valuable insights into the cell heterogeneity of in vitro cultured CNCCs and their potential as a source for tooth regeneration.
Collapse
Affiliation(s)
- Yifan Zhao
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shubin Chen
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Dandan Yang
- Experimental Center of Pathogenobiology Immunology, Cytobiology and Genetics, Basic Medical College, Jilin University, Changchun, China
| | - Jiashu Zhang
- Innovation Centre for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Di Wu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Si Xie
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xiaomei Li
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Wang
- Innovation Centre for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yaofeng Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Liao Y, Kang F, Xiong J, Xie K, Li M, Yu L, Wang Y, Chen H, Ye G, Yin Y, Guo W, Cai H, Zhu Q, Li Z. MSX1 +PDGFRA low limb mesenchyme-like cells as an efficient stem cell source for human cartilage regeneration. Stem Cell Reports 2024; 19:399-413. [PMID: 38428414 PMCID: PMC10937155 DOI: 10.1016/j.stemcr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Degenerative bone disorders have a significant impact on global health, and regeneration of articular cartilage remains a challenge. Existing cell therapies using mesenchymal stromal cells (MSCs) have shown limited efficacy, highlighting the necessity for alternative stem cell sources. Here, we have identified and characterized MSX1+ mesenchymal progenitor cells in the developing limb bud with remarkable osteochondral-regenerative and microenvironment-adaptive capabilities. Single-cell sequencing further revealed the presence of two major cell compositions within the MSX1+ cells, where a distinct PDGFRAlow subset retained the strongest osteochondral competency and could efficiently regenerate articular cartilage in vivo. Furthermore, a strategy was developed to generate MSX1+PDGFRAlow limb mesenchyme-like (LML) cells from human pluripotent stem cells that closely resembled their mouse counterparts, which were bipotential in vitro and could directly regenerate damaged cartilage in a mouse injury model. Together, our results indicated that MSX1+PDGFRAlow LML cells might be a prominent stem cell source for human cartilage regeneration.
Collapse
Affiliation(s)
- Yuansong Liao
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Fanchen Kang
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Jingfei Xiong
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Kun Xie
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Mingxu Li
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Ling Yu
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Hanyi Chen
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Yike Yin
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Qing Zhu
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China.
| | - Zhonghan Li
- Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Xu X, Gong X, Zhang L, Zhang H, Sun Y. PRX1-positive mesenchymal stem cells drive molar morphogenesis. Int J Oral Sci 2024; 16:15. [PMID: 38369512 PMCID: PMC10874978 DOI: 10.1038/s41368-024-00277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.
Collapse
Affiliation(s)
- Xiaoqiao Xu
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lei Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|