1
|
Wu Z, Pang L, Ding M. CFI-1 functions unilaterally to restrict gap junction formation in C. elegans. Development 2025; 152:dev202955. [PMID: 39679967 PMCID: PMC11829774 DOI: 10.1242/dev.202955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Electrical coupling is vital to neural communication, facilitating synchronized activity among neurons. Despite its significance, the precise mechanisms governing the establishment of gap junction connections between specific neurons remain elusive. Here, we identified that the PVC interneuron in Caenorhabditis elegans forms gap junction connections with the PVR interneuron. The transcriptional regulator CFI-1 (ARID3) is specifically expressed in the PVC but not PVR interneuron. Reducing cfi-1 expression in the PVC interneuron leads to enhanced gap junction formation in the PVR neuron, while ectopic expression of cfi-1 in the PVR neuron restores the proper level of gap junction connections in the PVC neuron, along with the normal touch response. These findings unveil the pivotal role of CFI-1 in bidirectionally regulating the formation of gap junctions within a specific neuronal pair, shedding light on the intricate molecular mechanisms governing neuronal connectivity in vivo.
Collapse
Affiliation(s)
- Zan Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Pang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Renaux E, Baudouin C, Schakman O, Gay O, Martin M, Marchese D, Achouri Y, Rezsohazy R, Gofflot F, Clotman F. Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development. Front Cell Neurosci 2024; 18:1466056. [PMID: 39479525 PMCID: PMC11521906 DOI: 10.3389/fncel.2024.1466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered. In this study, we aimed to identify additional markers to further describe the diversity of spinal V2 interneuron populations. Here, we compared the transcriptome of V2 interneurons with that of the other cells of the embryonic spinal cord and extracted a list of genes enriched in V2 interneurons, including Arid3c. Arid3c identifies an uncharacterized subset of V2 that partially overlaps with V2c interneurons. These two populations are characterized by the production of Onecut factors and Sox2, suggesting that they could represent a single functional V2 unit. Furthermore, we show that the overexpression or inactivation of Arid3c does not alter V2 production, but its absence results in minor defects in locomotor execution, suggesting a possible function in subtle aspects of spinal locomotor circuit formation.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Behavioral Analysis Platform (BEAP), Brussels, Belgium
| | - Ondine Gay
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon Cedex, France
| | - Manon Martin
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, Brussels, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| |
Collapse
|
3
|
Sharma N, Marques F, Kratsios P. Efficacy of auxin-inducible protein degradation in C. elegans tissues using different auxins and TIR1-expressing strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575916. [PMID: 38293206 PMCID: PMC10827146 DOI: 10.1101/2024.01.16.575916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The auxin-inducible degradation system has emerged as a powerful tool to deplete proteins of interest in cells and tissues of various model organisms, including C. elegans 2-5 . Here, we present a detailed protocol to perform AID-driven spatiotemporal depletion of specific proteins in C. elegans tissues. First, we introduced the AID degron and a fluorescent reporter at two conserved proteins: (a) the transcription factor CFI-1 (human ARID3), which is expressed in the nucleus of multiple C. elegans neurons and head muscle cells 6,7 , and (b) the broadly expressed translation initiation factor Y47D3A.21 (human DENR) that localizes in the cytoplasm. Second, we provide a step-by-step guide on how to generate C. elegans strains suitable for AID-mediated protein (CFI-1 and DENR) depletion. Third, we find that the degree of CFI-1 and DENR depletion in C. elegans tissues is comparable upon treatment with either natural auxin (indole-3-acetic acid (IAA) or a water-soluble synthetic auxin analog (K-NAA). Last, we compare the degree of AID-mediated CFI-1 depletion in C. elegans neurons when the transport inhibitor response 1 (TIR1), component of the SCF ubiquitin ligase complex, is provided in neurons or all somatic cells. Altogether, this protocol provides side-by-side comparisons of different auxins and TIR1-expressing lines. Such comparisons may benefit future studies of AID-mediated protein depletion in C. elegans . Graphical abstract Image provided as pdf (together with Figures). Highlights Efficient protein depletion in C. elegans tissues upon treatment with either natural or synthetic auxins. Pansomatic TIR1 expression leads to efficient depletion of CFI-1 and DENR.Panneuronal TIR1 expression leads to neuron-specific, yet variable CFI-1 depletion.The AID system is compatible with fluorescence microscopy, Western blotting and behavioral assays.
Collapse
|