1
|
Sun W, Lu H, Ma L, Ding C, Wang H, Chu Y. Deubiquitinase USP5 regulates RIPK1 driven pyroptosis in response to myocardial ischemic reperfusion injury. Cell Commun Signal 2024; 22:466. [PMID: 39350285 PMCID: PMC11440699 DOI: 10.1186/s12964-024-01853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Gasdermin D (GSDMD) mediated pyroptosis plays a significant role in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. However, the precise mechanisms regulating pyroptosis remain unclear. In the study, we aimed to investigate the underlying mechanism of pyroptosis in myocardial I/R injury. METHODS In the present study, we analyzed the effects of USP5 on the RIPK1 kinase activity mediated pyroptosis in vitro after H/R (hypoxia/reoxygenation) and in vivo in a MI/R mouse model. TTC and Evan's blue dye, Thioflavin S and immunohistochemistry staining were performed in wild-type, RIPK1flox/flox Cdh5-Cre and USP5 deficiency mice. CMEC cells were transfected with si-USP5. HEK293T cells were transfected with USP5 and RIPK1 overexpression plasmid or its mutants. The levels of USP5, RIPK1, Caspase-8, FADD and GSDMD were determined by Western blot. Protein interactions were evaluated by immunoprecipitation. The protein colocalization in cells was monitored using a confocal microscope. RESULTS In this study, our data demonstrate that RIPK1 is essential for limiting cardiac endothelial cell (CMEC) pyroptosis mediated by caspase-8 in response to myocardial I/R. Additionally, we investigate the role of ubiquitin-specific protease 5 (USP5) as a deubiquitinase for RIPK1. Mechanistically, USP5 interacts with RIPK1, leading to its deubiquitination and stabilization. CONCLUSIONS These findings offer new insights into the role of USP5 in regulating RIPK1-induced pyroptosis.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450000, Henan Province, China
- Department of Clinical Microbiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450000, China
| | - Hongquan Lu
- Department of Nuclear Medicine, Third People's Hospital of Honghe State, Honghe, 661000, China
| | - Lingkun Ma
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450000, Henan Province, China
| | - Cong Ding
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450000, Henan Province, China
| | - Hailan Wang
- Department of Cardiology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450000, China
| | - Yingjie Chu
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450000, Henan Province, China.
- Department of Cardiology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Kang D, Hwang HJ, Baek Y, Sung JY, Kim K, Park HJ, Ko YG, Kim YN, Lee JS. TRIM22 induces cellular senescence by targeting PHLPP2 in hepatocellular carcinoma. Cell Death Dis 2024; 15:26. [PMID: 38199981 PMCID: PMC10781680 DOI: 10.1038/s41419-024-06427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The ubiquitin-proteasome system is a vital protein degradation system that is involved in various cellular processes, such as cell cycle progression, apoptosis, and differentiation. Dysregulation of this system has been implicated in numerous diseases, including cancer, vascular disease, and neurodegenerative disorders. Induction of cellular senescence in hepatocellular carcinoma (HCC) is a potential anticancer strategy, but the precise role of the ubiquitin-proteasome system in cellular senescence remains unclear. In this study, we show that the E3 ubiquitin ligase, TRIM22, plays a critical role in the cellular senescence of HCC cells. TRIM22 expression is transcriptionally upregulated by p53 in HCC cells experiencing ionizing radiation (IR)-induced senescence. Overexpression of TRIM22 triggers cellular senescence by targeting the AKT phosphatase, PHLPP2. Mechanistically, the SPRY domain of TRIM22 directly associates with the C-terminal domain of PHLPP2, which contains phosphorylation sites that are subject to IKKβ-mediated phosphorylation. The TRIM22-mediated PHLPP2 degradation leads to activation of AKT-p53-p21 signaling, ultimately resulting in cellular senescence. In both human HCC databases and patient specimens, the levels of TRIM22 and PHLPP2 show inverse correlations at the mRNA and protein levels. Collectively, our findings reveal that TRIM22 regulates cancer cell senescence by modulating the proteasomal degradation of PHLPP2 in HCC cells, suggesting that TRIM22 could potentially serve as a therapeutic target for treating cancer.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Jee Young Sung
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - KyeongJin Kim
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
| | - Heon Joo Park
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Yong-Nyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea.
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
3
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
4
|
Ren H, Kang N, Yin S, Xu C, Qu T, Dai D. Characteristic of molecular subtypes based on PANoptosis-related genes and experimental verification of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204720. [PMID: 37171396 DOI: 10.18632/aging.204720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer that originates from liver cells. It is one of the most common types of liver cancer and a leading cause of cancer-related death worldwide. Early detection and treatment can improve the HCC prognosis. Therefore, it is necessary to further improve HCC markers and risk stratification. PANoptosome is a cytoplasmic polymer protein complex that regulates a proinflammatory programmed cell death pathway called "PANoptosis". The role of PANoptosis in HCC remains unclear. In this study, the molecular changes of PANoptosis related genes (PAN-RGs) in HCC were systematically evaluated. We characterized the heterogeneity of HCC by using consensus clustering to identify two distinct subtypes. The two subtypes showed different survival rate, biological function, chemotherapy drug sensitivity and immune microenvironment. After identification of PAN-RG differential expression genes (DEGs), a prognostic model was established by Cox regression analysis using minimum absolute contraction and selection operator (LASSO), and its prognostic value was verified by Cox regression analysis, Kaplan-Meier curve and receiver operating characteristic (ROC) curve. Our own specimens were also used to further validate the prognostic significance and possible clinical value of the selected targets. Subsequently, we conducted a preliminary discussion on the reasons for the influence of the model on the prognosis through TME analysis, drug resistance analysis, TMB analysis and other studies. This study provides a new idea for individualized and precise treatment of HCC.
Collapse
Affiliation(s)
- Haitao Ren
- Department of Interventional Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Na Kang
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Shuan Yin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Chen Xu
- Department of Infectious Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Tengfei Qu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Dongdong Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| |
Collapse
|