1
|
Tian Z, Chen B, Li H, Pei X, Sun Y, Sun G, Pan Z, Dai P, Gao X, Geng X, Peng Z, Jia Y, Hu D, Wang L, Pang B, Zhang A, Du X, He S. Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. MOLECULAR PLANT 2024; 17:1539-1557. [PMID: 39169630 DOI: 10.1016/j.molp.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Panhong Dai
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ai Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Yan H, Mendieta JP, Zhang X, Marand AP, Liang Y, Luo Z, Minow MAA, Jang H, Li X, Roule T, Wagner D, Tu X, Wang Y, Jiang D, Zhong S, Huang L, Wessler SR, Schmitz RJ. Evolution of plant cell-type-specific cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574753. [PMID: 38260561 PMCID: PMC10802394 DOI: 10.1101/2024.01.08.574753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cis-regulatory elements (CREs) are critical in regulating gene expression, and yet understanding of CRE evolution remains challenging. Here, we constructed a comprehensive single-cell atlas of chromatin accessibility in Oryza sativa, integrating data from 103,911 nuclei representing 126 discrete cell states across nine distinct organs. We used comparative genomics to compare cell-type resolved chromatin accessibility between O. sativa and 57,552 nuclei from four additional grass species (Zea mays, Sorghum bicolor, Panicum miliaceum, and Urochloa fusca). Accessible chromatin regions (ACRs) had different levels of conservation depending on the degree of cell-type specificity. We found a complex relationship between ACRs with conserved noncoding sequences, cell-type specificity, conservation, and tissue-specific switching. Additionally, we found that epidermal ACRs were less conserved compared to other cell types, potentially indicating that more rapid regulatory evolution has occurred in the L1-derived epidermal layer of these species. Finally, we identified and characterized a conserved subset of ACRs that overlapped the repressive histone modification H3K27me3, implicating them as potentially silencer-like CREs maintained by evolution. Collectively, this comparative genomics approach highlights the dynamics of plant cell-type-specific CRE evolution.
Collapse
|
4
|
Zhang L, Liu L, Li H, He J, Chao H, Yan S, Yin Y, Zhao W, Li M. 3D genome structural variations play important roles in regulating seed oil content of Brassica napus. PLANT COMMUNICATIONS 2024; 5:100666. [PMID: 37496273 PMCID: PMC10811347 DOI: 10.1016/j.xplc.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Dissecting the complex regulatory mechanism of seed oil content (SOC) is one of the main research goals in Brassica napus. Increasing evidence suggests that genome architecture is linked to multiple biological functions. However, the effect of genome architecture on SOC regulation remains unclear. Here, we used high-throughput chromatin conformation capture to characterize differences in the three-dimensional (3D) landscape of genome architecture of seeds from two B. napus lines, N53-2 (with high SOC) and Ken-C8 (with low SOC). Bioinformatics analysis demonstrated that differentially accessible regions and differentially expressed genes between N53-2 and Ken-C8 were preferentially enriched in regions with quantitative trait loci (QTLs)/associated genomic regions (AGRs) for SOC. A multi-omics analysis demonstrated that expression of SOC-related genes was tightly correlated with genome structural variations in QTLs/AGRs of B. napus. The candidate gene BnaA09g48250D, which showed structural variation in a QTL/AGR on chrA09, was identified by fine-mapping of a KN double-haploid population derived from hybridization of N53-2 and Ken-C8. Overexpression and knockout of BnaA09g48250D led to significant increases and decreases in SOC, respectively, in the transgenic lines. Taken together, our results reveal the 3D genome architecture of B. napus seeds and the roles of genome structural variations in SOC regulation, enriching our understanding of the molecular mechanisms of SOC regulation from the perspective of spatial chromatin structure.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan 430075, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuxiang Yan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Yontai Yin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China.
| |
Collapse
|