1
|
Yao N, Kinouchi K, Katoh M, Ashtiani KC, Abdelkarim S, Morimoto H, Torimitsu T, Kozuma T, Iwahara A, Kosugi S, Komuro J, Kato K, Tonomura S, Nakamura T, Itoh A, Yamaguchi S, Yoshino J, Irie J, Hashimoto H, Yuasa S, Satoh A, Mikami Y, Uchida S, Ueki T, Nomura S, Baldi P, Hayashi K, Itoh H. Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring. Cell Metab 2025:S1550-4131(24)00484-4. [PMID: 39814018 DOI: 10.1016/j.cmet.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Na Yao
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Sherif Abdelkarim
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Hiroyuki Morimoto
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuto Torimitsu
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahide Kozuma
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihide Iwahara
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Health Center, Keio University, Yokohama, Japan
| | - Jin Komuro
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kyosuke Kato
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tonomura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshifumi Nakamura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Arata Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan; The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shusaku Uchida
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
2
|
Zhang Y, Xu S, Fan M, Yao H, Jiang C, He Q, Shi H, Lin R. Circadian rhythm disruption modulates enteric neural precursor cells differentiation leading to gastrointestinal motility dysfunction via the NR1D1/NF-κB axis. J Transl Med 2024; 22:975. [PMID: 39468593 PMCID: PMC11520590 DOI: 10.1186/s12967-024-05766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVES Circadian rhythm disruption (CRD) is implicated with numerous gastrointestinal motility diseases, with the enteric nervous system (ENS) taking main responsibility for the coordination of gastrointestinal motility. The purpose of this study is to explore the role of circadian rhythms in ENS remodeling and to further elucidate the underlying mechanisms. METHODS First, we established a jet-lagged mice model by advancing the light/dark phase shift by six hours every three days for eight weeks. Subsequent changes in gastrointestinal motility and the ENS were then assessed. Additionally, a triple-transgenic mouse strain (Nestin-creERT2 × Ngfr-DreERT2: DTRGFP) was utilized to track the effects of CRD on the differentiation of enteric neural precursor cells (ENPCs). RNA sequencing was also performed to elucidate the underlying mechanism. RESULTS Compared to the control group, CRD significantly accelerated gastrointestinal motility, evidenced by faster intestinal peristalsis (P < 0.01), increased fecal output (P < 0.01), and elevated fecal water content (P < 0.05), as well as enhanced electrical field stimulation induced contractions (P < 0.05). These effects were associated with an increase in the number of glial cells and nitrergic neurons in the colonic myenteric plexus. Additionally, ENPCs in the colon showed a heightened differentiation into glial cells and nitrergic neurons. Notably, the NR1D1/nuclear factor-kappaB (NF-κB) axis played a crucial role in the CRD-mediated changes in ENPCs differentiation. Supplementation with NR1D1 agonist or NF-κB antagonist was able to restore gastrointestinal motility and normalize the ENS in jet-lagged mice. CONCLUSIONS CRD regulates the differentiation of ENPCs through the NR1D1/NF-κB axis, resulting in dysfunction of the ENS and impaired gastrointestinal motility in mice.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shizhao Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi He
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Rajan PK, Udoh UAS, Finley R, Pierre SV, Sanabria J. The Biological Clock of Liver Metabolism in Metabolic Dysfunction-Associated Steatohepatitis Progression to Hepatocellular Carcinoma. Biomedicines 2024; 12:1961. [PMID: 39335475 PMCID: PMC11428469 DOI: 10.3390/biomedicines12091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are endogenous behavioral or physiological cycles that are driven by a daily biological clock that persists in the absence of geophysical or environmental temporal cues. Circadian rhythm-related genes code for clock proteins that rise and fall in rhythmic patterns driving biochemical signals of biological processes from metabolism to physiology and behavior. Clock proteins have a pivotal role in liver metabolism and homeostasis, and their disturbances are implicated in various liver disease processes. Encoded genes play critical roles in the initiation and progression of metabolic dysfunction-associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC) and their proteins may become diagnostic markers as well as therapeutic targets. Understanding molecular and metabolic mechanisms underlying circadian rhythms will aid in therapeutic interventions and may have broader clinical applications. The present review provides an overview of the role of the liver's circadian rhythm in metabolic processes in health and disease, emphasizing MASH progression and the oncogenic associations that lead to HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Utibe-Abasi S Udoh
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Robert Finley
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
| | - Juan Sanabria
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
- Department of Nutrition and Metabolomic Core Facility, School of Medicine, Case Western Reserve University, Cleveland, OH 44100, USA
| |
Collapse
|