1
|
Bian X, Li X, Qu C, Zhang M, Li D, Wang Y, Jiang J, Liu G. Transcriptome sequencing-based analysis of primary vein development in Betula pendula 'Dalecarlica'. Gene 2025; 933:148948. [PMID: 39277147 DOI: 10.1016/j.gene.2024.148948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Keymessage The study revealed the major biological processes occurred at three developmental stages and identified candidate genes involved in primary vein development of birch plants. Vascular tissues usually mirror the surrounding leaf shape and its development plays a fundamental role in plant performance. However, the information of vascular development in birch trees, especially primary vein development, remains unclear. Therefore, we conducted the anatomical observation on primary veins from leaves at different development stages in Betula pendula 'Dalecarlica'. With the development of primary vein, dynamic changes in mechanical tissue thickness and primary vein diameter were consistent with each other, and the sum of phloem, xylem and cambium thickness was significantly varied. Transcriptome analysis indicated that primary vein development could be divided into three stages, namely Stage I, II and III, which were in aggreement with anatomical observation. Expression of marker genes associated with vascular tissues revealed that pro-vasculature development occurred at Stage I and II, and phloem development occurred at Stage III. GO enrichment analysis of differentially expressed genes (DEGs) showed that shared DEGs at Stage II were mainly engaged in cell division and cell cycle, and shared DEGs at Stage III were mainly engaged in phosphorylation. Decreased cell division and cell cycle as well as activation of lignin biosynthesis might contribute to primary vein development. Combining phenotypic traits, we performed weighted gene co-expression network analysis and identified a cytochrome P450 84A (CYP84A) family gene (BpF5H1). Based on analyses of gene families, expression patterns and yeast-two hybrid assay results, we proposed a potential electron transfer pathway involving BpF5H1 and three cytochrome b5 proteins during primary vein development in B. pendula 'Dalecarlica'. These results could shed some light on which biological processes occurred during primary vein formation and provide some valuable clues for vascular morphogenesis in woody plants.
Collapse
Affiliation(s)
- Xiuyan Bian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Xiaoyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Manman Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Danyang Li
- Core facility of Wuhan University, Wuhan 430072, China
| | - Yunjiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China.
| |
Collapse
|
2
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
3
|
Jiang Y, Huang D, Lu C, Ye S, Li L, Li T, Liu X, Chen B, Guo J, Lu L. Shorten spreading duration enhance the quality of summer Meitan Cuiya tea. Food Chem X 2024; 24:101878. [PMID: 39493592 PMCID: PMC11528227 DOI: 10.1016/j.fochx.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Meitan Cuiya (MTCY), a representative green tea from Guizhou, China, may exhibit lower quality in summer due to increased bitterness and astringency. Spreading is a common method to enhance tea quality, but its impact on summer MTCY remains unclear. This study combined transcriptomics and volatile metabolomics to investigate the effects of spreading duration on quality of summer fresh tea leaves and MTCY. Results showed that spreading time shortened to 4 h improved the taste of MTCY, due to lower catechins and higher theanine levels. This duration also yielded woody floral scent in MTCY, marked by high levels of trans-Cubebol, linalool, (Z)-linalool oxide. Transcriptomic analysis linked the 4-h spreading to proteasome activities. Aroma formation was related to diterpenoid and flavonoid biosynthesis. Additionally, gibberellins and auxin were associated with quality formation in fresh tea leaves. This research lays a foundation for improving quality of fresh tea leaves and MTCY in summer.
Collapse
Affiliation(s)
- Yihe Jiang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Dayu Huang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Cui Lu
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Shenyuan Ye
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Linlin Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Tong Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xiaohua Liu
- Meitan county secondary vocational school, Zunyi 563000, China
| | - Benguo Chen
- Meitan county secondary vocational school, Zunyi 563000, China
| | - Jun Guo
- Meitan county secondary vocational school, Zunyi 563000, China
| | - Litang Lu
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
- College of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Zhou N, Guo C, Du J, Xu Q, Li J, Huang D, Zheng X, Tu L. PPP1R14B-mediated phosphorylation enhances protein stability of RPS6KA1 to promote hepatocellular carcinoma tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119840. [PMID: 39216602 DOI: 10.1016/j.bbamcr.2024.119840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide with a poor clinical prognosis. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an unidentified protein phosphatase 1 regulatory subunit that is associated with the occurrence and development of various cancers. Recently, PPP1R14B was found to contribute to paclitaxel resistance and cell progression in triple-negative breast cancer; however, the role of PPP1R14B in HCC is unknown. Here, we found that PPP1R14B was highly expressed in HCC tissues, which suggested a poor prognosis. Knockdown of PPP1R14B significantly inhibited the survival and tumorigenic ability of HCC cells, while overexpression of PPP1R14B had the opposite effects. Mechanistically, Ribosomal Protein S6 Kinase type 1(RPS6KA1) was identified as the target gene of PPP1R14B. PPP1R14B maintained the stability and phosphorylation of RPS6KA1, and positively regulated activation of the AKT/NF-κB pathway. Importantly, PPP1R14B-deficient tumor suppression could be partially restored by wild-type but not phosphorylated mutant RPS6KA1. Taken together, these findings shed light on the function and mechanism of PPP1R14B in HCC progression, indicating PPP1R14B is a promising molecular target for the treatment of HCC.
Collapse
Affiliation(s)
- Nana Zhou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Chaoqin Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Jingyang Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| | - Juejiashan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou 310053, China.
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
5
|
Marques DN, Piotto FA, Azevedo RA. Phosphoproteomics: Advances in Research on Cadmium-Exposed Plants. Int J Mol Sci 2024; 25:12431. [PMID: 39596496 PMCID: PMC11594898 DOI: 10.3390/ijms252212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
With the increasing concern on heavy metal contamination in agriculture and other environmental settings, unraveling the mechanisms of cadmium (Cd) tolerance and response in plants has become highly important. Ongoing plant Cd research over the years has focused on strategic and relevant aspects, including molecular, biochemical, and physiological processes. From this perspective, phosphoproteomics appears to be an innovative and powerful approach to investigating plant responses to Cd stress. Here, we summarize progress in plant Cd research across different plant species regarding large-scale phosphoproteomic investigations. Some studies revealed major proteins participating in detoxification, stress signaling, and metabolism, along with their regulation through phosphorylation, which modulates the plant's defense against Cd. However, many pathways remain unexplored. Expanding these studies will help our ability to alleviate Cd stress and provide further information concerning involved mechanisms. Our purpose is to inspire researchers to further explore the use of phosphoproteomics in unraveling such complex mechanisms of Cd tolerance and response across various plant species, with the ultimate aim of enhancing strategies for mitigating Cd stress in agriculture and polluted environments.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Fernando Angelo Piotto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
| |
Collapse
|
6
|
Huang J, Lei T, Zhou Q, Fang Z, Ruan H, Wang L, Qian W, Lu Y, Wang Q, Gao L, Wang Z, Wang Y. Comparative Metabolome and Transcriptome Analysis Revealed the Accumulative Mechanism of Rubusoside in Chinese Sweet Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24539-24551. [PMID: 39442010 DOI: 10.1021/acs.jafc.4c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Terpenoids are important secondary metabolites in Rubus. Rubusoside is a relatively specific diterpenoid bioactive component in the leaves of Chinese Sweet Tea (Rubus suavissimus). However, the terpenoid anabolic pathway of Rubus and the molecular mechanism underlying the specific accumulation of rubusoside in R. suavissimus remain unclear. Here, metabolomics and transcriptomics analyses were performed on differences in terpenoid metabolism levels between R. suavissimus (sweet leaves) and Rubus chingii (bitter leaves). Steviol glycosides and goshonosides primarily accumulated in R. suavissimus and R. chingii, respectively. Three pairs of highly homologous glycosyltransferase genes (UGT85A57, UGT75L20, and UGT75T4) associated with rubusoside biosynthesis in the two Rubus species were identified. The three pairs of UGT proteins in both species could glycosylate steviol. Thus, the transcriptional regulation of UGTs in R. suavissimus appears to play a pivotal role in rubusoside accumulation. Our findings provide insights into the differences in terpenoid metabolism between R. suavissimus and R. chingii and reveal the molecular mechanism of rubusoside accumulation in R. suavissimus.
Collapse
Affiliation(s)
- Jun Huang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qi Zhou
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yeyang Lu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhenhong Wang
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
7
|
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi CL, Meng S, Tan C, Jiang CZ, Li T, Qi M, Xu T. CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. PLANT PHYSIOLOGY 2024; 196:2014-2029. [PMID: 39218791 DOI: 10.1093/plphys/kiae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024]
Abstract
Flower drop is a major cause for yield loss in many crops. Previously, we found that the tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) gene contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that 1 calcium-dependent protein kinase gene, SlCPK10, was highly expressed in the AZ and upregulated by SlIDL6-triggered [Ca2+]cyt. Overexpression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low-light stress.
Collapse
Affiliation(s)
- Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | | | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Xia F, Zhang N, Smith RE, Chakraborty J, Sobol G, Tang X, Fei Z, Sessa G, Martin GB. Related type 2C protein phosphatases Pic3 and Pic12 negatively regulate immunity in tomato to Pseudomonas syringae. PLANT PHYSIOLOGY 2024; 196:1997-2013. [PMID: 39074178 DOI: 10.1093/plphys/kiae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species, but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we generated loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that 2 closely related PP2C phosphatases, PP2C immunity-associated candidate 3 (Pic3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and 2 independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense-related genes. RG-pic3/RG-pic12 double-mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.
Collapse
Affiliation(s)
- Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Renee E Smith
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Joydeep Chakraborty
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guy Sobol
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Xuemei Tang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Guido Sessa
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Farooq MA, Ayyaz A, Zou HX, Zhou W, Hannan F, Yan X. Jasmonic acid mediates Ca 2+ dependent signal transduction and plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112239. [PMID: 39197534 DOI: 10.1016/j.plantsci.2024.112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Pathogen attacks can cause significant damage to plants, posing a threaten to global food production. Plants have developed exquisite methods to rapidly store a key defensive hormone jasmonate (JA), which stimulates their entire evolutionary adaptive response to pathogen attack. However, understanding how plants initiate JA biosynthesis in response to pathogen attacks has remained elusive. In this review, we discuss the newly discovered JAV1-JAZ8-WRKY51 (JJW) complex, which plays a crucial role in regulating JA production to deter insect attacks. The JJW complex inhibits JA production in plants, maintaining a low baseline level of JA that promotes optimal plant development. However, when plants are attacked by insects, a rapid influx of calcium stimulates the JAV1 calcium-dependent protein phosphate, leading to the breakdown of the JJW complex and the activation of JA production. This surge in JA levels, initiates plant defense mechanisms against the invading insects. These findings shed light on the intricate defense system that plants have evolved to combat diseases.
Collapse
Affiliation(s)
- Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Fakhir Hannan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China.
| |
Collapse
|
10
|
Chen X, van de Sande JW, Ritmejeris J, Wen C, Brinkerhoff H, Laszlo AH, Albada B, Dekker C. Resolving Sulfation Posttranslational Modifications on a Peptide Hormone using Nanopores. ACS NANO 2024; 18:28999-29007. [PMID: 39388343 PMCID: PMC11503906 DOI: 10.1021/acsnano.4c09872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Peptide hormones are decorated with post-translational modifications (PTMs) that are crucial for receptor recognition. Tyrosine sulfation on plant peptide hormones is, for example, essential for plant growth and development. Measuring the occurrence and position of sulfotyrosine is, however, compromised by major technical challenges during isolation and detection. Nanopores can sensitively detect protein PTMs at the single-molecule level. By translocating PTM variants of the plant pentapeptide hormone phytosulfokine (PSK) through a nanopore, we here demonstrate the accurate identification of sulfation and phosphorylation on the two tyrosine residues of PSK. Sulfation can be clearly detected and distinguished (>90%) from phosphorylation on the same residue. Moreover, the presence or absence of PTMs on the two close-by tyrosine residues can be accurately determined (>96% accuracy). Our findings demonstrate the extraordinary sensitivity of nanopore protein measurements, providing a powerful tool for identifying position-specific sulfation on peptide hormones and promising wider applications to identify protein PTMs.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Jasper W. van de Sande
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Wageningen 6807 WE, The Netherlands
| | - Justas Ritmejeris
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Chenyu Wen
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Henry Brinkerhoff
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Andrew H. Laszlo
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Bauke Albada
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Wageningen 6807 WE, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, The Netherlands
| |
Collapse
|
11
|
Peng J, Wang T, Li F, Wang S, Zhang M, Ayala J, Liu Y, Hou R, Cai K. Proteomic analysis of giant panda testicular tissue of different age groups. PeerJ 2024; 12:e18249. [PMID: 39677950 PMCID: PMC11639135 DOI: 10.7717/peerj.18249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Background The reproductive ability of male giant pandas has been a major complicating factor in the ex-situ conservation of the species. While it is well known that the testis produces sperm and secretes androgens, a process that requires precise regulation of various proteins, at present, there has been no systematic study on the composition of proteins in the testis of the giant pandas. Therefore, this study aims to apply proteomics to explore the regulation of proteins in the testes of giant pandas. Methods Samples from the testes of three giant pandas (22 years, 18 years, 8 days) were studied to assess the protein's function. A label-free quantitative method was used to isolate testicular proteins from each male, 139,039 peptides and 11,435 proteins were obtained. Results Gene Ontology (GO) annotates most of the proteins involved in the processes of protein phosphorylation, oxidation-reduction, proteolysis, and signal transduction. KEGG pathway indicated that most of the proteins were involved in the pathway of signal transduction, transport, and catabolism. The protein kinase and WD40 repeats were involved in protein-protein interaction, which in turn regulates gene expression in the testicular tissue of giant pandas. Conclusions This study is the first to conduct an in-depth proteomic analysis of testicular tissue in giant pandas. The results revealed the important role of proteins in testicular tissue on spermatogenesis, testosterone production, and testicular microenvironment, providing clues for further research on male giant panda reproduction.
Collapse
Affiliation(s)
- Jing Peng
- School of Pharmacy, Chengdu University, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu, Sichuan, China
| | - Feiping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Shenfei Wang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Mengshi Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - James Ayala
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Yuliang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Kailai Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Wang Z, Zhang W, Yin X, Wu Q, Zhang Y, Qian Y, Bao Q, Liu F. Multi-omics analyses were combined to construct ubiquitination-related features in colon adenocarcinoma and identify ASNS as a novel biomarker. Front Immunol 2024; 15:1466286. [PMID: 39445026 PMCID: PMC11496147 DOI: 10.3389/fimmu.2024.1466286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background As one of the malignant tumors with the highest incidence and fatality in the world, colon adenocarcinoma (COAD) has a very complex pathogenic mechanism, which has not yet been fully elucidated. Ubiquitin can regulate cell proliferation, cell cycle, apoptosis, DNA damage repair, and other processes by changing the activity of substrate proteins or causing ubiquitin-proteasome degradation. These are the key links in the pathogenesis of COAD, and ubiquitin plays an important role in the occurrence and development of COAD. Methods We integrated transcriptomics, single-cell and clinical omics, and TCGA and GEO databases of COAD patient data. Cox and Lasso regression was employed to assess ubiquitination genes in COAD for generating ubiquitination-related features. The aim was to evaluate the prognostic value of these features for tumors and their impact on the immune microenvironment. At the same time, the expression level of model genes was further analyzed using single-cell data. Finally, the expression and function of ASNS, a key gene for this trait, were detected in vitro. Results In our study, based on identifiable changes in the expression of marker genes, this feature can be used to classify patients with COAD. Kaplan-Meier survival analysis indicated that those with elevated risk scores in each cohort experienced inferior outcomes. There is good validation in both the training queue and the validation queue. The results of the immune infiltration analysis showed that the immune infiltration rate was significantly increased in the high-risk group. After the knockdown of ASNS, an important gene in the signature, the activity and migration capacity of SW620 and RKO cell lines and colony formation capacity were dramatically reduced in cell tests. Conclusion We screened ubiquitination-related genes and constructed ubiquitination-related features, which can be used as reliable prognostic indicators of COAD. ASNS was identified as a possible biomarker for COAD.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Wenbing Zhang
- Department of General Surgery, Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Xin Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qinqing Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Yongwei Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Qian Bao
- Department of Pediatric Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| |
Collapse
|
13
|
Huang G, Xiao R, Chen W, Dai Q. GBMPhos: A Gating Mechanism and Bi-GRU-Based Method for Identifying Phosphorylation Sites of SARS-CoV-2 Infection. BIOLOGY 2024; 13:798. [PMID: 39452107 PMCID: PMC11505089 DOI: 10.3390/biology13100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Phosphorylation, a reversible and widespread post-translational modification of proteins, is essential for numerous cellular processes. However, due to technical limitations, large-scale detection of phosphorylation sites, especially those infected by SARS-CoV-2, remains a challenging task. To address this gap, we propose a method called GBMPhos, a novel method that combines convolutional neural networks (CNNs) for extracting local features, gating mechanisms to selectively focus on relevant information, and a bi-directional gated recurrent unit (Bi-GRU) to capture long-range dependencies within protein sequences. GBMPhos leverages a comprehensive set of features, including sequence encoding, physicochemical properties, and structural information, to provide an in-depth analysis of phosphorylation sites. We conducted an extensive comparison of GBMPhos with traditional machine learning algorithms and state-of-the-art methods. Experimental results demonstrate the superiority of GBMPhos over existing methods. The visualization analysis further highlights its effectiveness and efficiency. Additionally, we have established a free web server platform to help researchers explore phosphorylation in SARS-CoV-2 infections. The source code of GBMPhos is publicly available on GitHub.
Collapse
Affiliation(s)
- Guohua Huang
- College of Information Science and Engineering, Shaoyang University, Shaoyang 422000, China; (G.H.); (R.X.)
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha 410205, China
| | - Runjuan Xiao
- College of Information Science and Engineering, Shaoyang University, Shaoyang 422000, China; (G.H.); (R.X.)
| | - Weihong Chen
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha 410205, China
| | - Qi Dai
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
14
|
Iqbal Z, Munir M. Multifaceted natural drought response mechanisms in three elite date palm cultivars uncovered by expressed sequence tags analysis. Sci Rep 2024; 14:23186. [PMID: 39369059 PMCID: PMC11455940 DOI: 10.1038/s41598-024-74422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
This study extends our prior research on drought responses in three date palm cultivars (Khalas, Reziz, and Sheshi) under controlled conditions. Here, we investigated their drought stress adaptive strategies under ambient environment. Under natural field drought conditions, three date palm cultivars experienced significantly (p ≤ 0.05) varying regulations in their physiological attributes. Specifically, chlorophyll content, leaf RWC, photosynthesis, stomatal conductance, and transpiration reduced significantly, while intercellular CO2 concentration and water use efficiency increased. Through suppression subtraction hybridization (SSH), a rich repertoire (1026) of drought-responsive expressed sequence tags (ESTs) were identified: 300 in Khalas, 343 in Reziz, and 383 in Sheshi. Functional analysis of ESTs, including gene annotation and KEGG pathways elucidation, unveiled that these cultivars withstand drought by leveraging indigenous and multifaceted pathways. While some pathways aligned with previously reported drought resilience mechanism observed under controlled conditions, several new indigenous pathways were noted, pinpointing cultivar-specific adaptations. ESTs identified in three date palm cultivars were enriched through GSEA analysis. Khalas exhibited enrichment in cellular and metabolic processes, catalytic activity, and metal ion binding. Reziz showed enrichment in biological regulation, metabolic processes, signaling, and nuclear functions. Conversely, Sheshi displayed enrichment in organelle, photosynthetic, and ribosomal components. Notably, ca. 50% of the ESTs were unique and novel, underlining the complexity of their adaptive genetic toolkit. Overall, Khalas displayed superior drought tolerance, followed by Reziz and Sheshi, highlighting cultivar-specific variability in adaptation. Conclusively, date palm cultivars exhibited diverse genetic and physiological strategies to cope with drought, demonstrating greater complexity in their resilience compared to controlled settings.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| |
Collapse
|
15
|
Peng Y, Ming Y, Jiang B, Zhang X, Fu D, Lin Q, Zhang X, Wang Y, Shi Y, Gong Z, Ding Y, Yang S. Differential phosphorylation of Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 modulates calcium-mediated freezing tolerance in Arabidopsis. THE PLANT CELL 2024; 36:4356-4371. [PMID: 38875155 PMCID: PMC11449002 DOI: 10.1093/plcell/koae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. In this study, we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibits decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.
Collapse
Affiliation(s)
- Yue Peng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhang Ming
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bochen Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiuyue Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qihong Lin
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Si J, Fan Z, Wu C, Yang Y, Shan W, Kuang J, Lu W, Wei W, Chen J. MaHsf24, a novel negative modulator, regulates cold tolerance in banana fruits by repressing the expression of HSPs and antioxidant enzyme genes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2873-2886. [PMID: 38856080 PMCID: PMC11536452 DOI: 10.1111/pbi.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.
Collapse
Affiliation(s)
- Jia Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Zhong‐qi Fan
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural/Institute of Postharvest Technology of Agricultural Products, College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao‐jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Ying‐ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
17
|
Wang X, Chen M, Li J, Kong M, Tan S. The SCOOP-MIK2 immune pathway modulates Arabidopsis root growth and development by regulating PIN-FORMED abundance and auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:318-334. [PMID: 39162107 DOI: 10.1111/tpj.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Plants synthesize hundreds of small secretory peptides, which are perceived by the receptor-like kinase (RLK) family at the cell surface. Various signaling peptide-RLK pairs ensure plant adaptation to distinct environmental conditions. Here, we report that SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) immune peptides modulate root growth and development by regulating PIN-FORMED (PIN)-regulated polar auxin transport in Arabidopsis. The SCOOP4 and SCOOP12 treatments impaired root gravitropic growth, auxin redistribution in response to gravistimulation, and PIN abundance in the PM. Furthermore, genetic and cell biological analyses revealed that these physiological and cellular effects of SCOOP4 and SCOOP12 peptides are mediated by the receptor MALE DISCOVERER1-INTERACTING RECEPTOR LIKE KINASE2 (MIK2) and the downstream mitogen-activated kinase MPK6. Biochemical evidence indicates that MPK6 directly phosphorylates the cytosolic loop of PIN proteins. Our work established a link between the immune signaling peptide SCOOPs and root growth pathways, providing insights into the molecular mechanisms underlying plant root adaptive growth in the defense response.
Collapse
Affiliation(s)
- Xian Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meng Chen
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Li
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Mengjuan Kong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
18
|
Romano Spica V, Volpini V, Valeriani F, Carotenuto G, Arcieri M, Platania S, Castrignanò T, Clementi ME, Michetti F. In Silico Predicting the Presence of the S100B Motif in Edible Plants and Detecting Its Immunoreactive Materials: Perspectives for Functional Foods, Dietary Supplements and Phytotherapies. Int J Mol Sci 2024; 25:9813. [PMID: 39337302 PMCID: PMC11431829 DOI: 10.3390/ijms25189813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The protein S100B is a part of the S100 protein family, which consists of at least 25 calcium-binding proteins. S100B is highly conserved across different species, supporting important biological functions. The protein was shown to play a role in gut microbiota eubiosis and is secreted in human breast milk, suggesting a physiological trophic function in newborn development. This study explores the possible presence of the S100B motif in plant genomes, and of S100B-like immunoreactive material in different plant extracts, opening up potential botanical uses for dietary supplementation. To explore the presence of the S100B motif in plants, a bioinformatic workflow was used. In addition, the immunoreactivity of S100B from vegetable and fruit samples was tested using an ELISA assay. The S100B motif was expected in silico in the genome of different edible plants belonging to the Viridiplantae clade, such as Durio zibethinus or Malus domestica and other medicinal species. S100B-like immunoreactive material was also detected in samples from fruits or leaves. The finding of S100B-like molecules in plants sheds new light on their role in phylogenesis and in the food chain. This study lays the foundation to elucidate the possible beneficial effects of plants or derivatives containing the S100B-like principle and their potential use in nutraceuticals.
Collapse
Affiliation(s)
- Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Veronica Volpini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Giovanni Carotenuto
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Manuel Arcieri
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Serena Platania
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Fabrizio Michetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
| |
Collapse
|
19
|
Zhang M, Hu K, Ma L, Geng M, Zhang C, Yao G, Zhang H. Persulfidation and phosphorylation of transcription factor SlWRKY6 differentially regulate tomato fruit ripening. PLANT PHYSIOLOGY 2024; 196:210-227. [PMID: 38728423 DOI: 10.1093/plphys/kiae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
Cysteine desulfhydrase catalyses the generation of the signaling molecule hydrogen sulfide (H2S) in plants. In this study, we found that H2S can inhibit tomato (Solanum lycopersicum) fruit ripening and SlWRKY6 undergoes differential protein persulfidation in SlLCD1-overexpressing leaves. Then, further study indicated that SlWRKY6 could be persulfidated by H2S at Cys396. By construction of slwrky6 mutants and SlWRKY6-OE lines, we found that SlWRKY6 positively regulates leaf senescence and fruit ripening by activating the transcription of ripening-related genes STAYGREEN 1 (SlSGR1) and Senescence-Associated Gene 12 (SlSAG12). In addition, SlWRKY6 interacted with kinase SlMAPK4 and was phosphorylated at Ser33. Dual-luciferase transient expression assays and electrophoretic mobility shift assays indicated that SlWRKY6 persulfidation attenuated its transcriptional regulation of target genes SlSGR1 and SlSAG12, whereas SlWRKY6 phosphorylation by SlMAPK4 activated the transcription of target genes to promote fruit ripening. Moreover, we provided evidence that SlWRKY6 persulfidation attenuated its SlMAPK4-mediated phosphorylation to inhibit tomato fruit ripening. By transient expression of SlWRKY6, SlWRKY6C396A, SlWRKY6S33A, and SlWRKY6S33D in slwrky6 fruits, we found that SlWRKY6 persulfidation attenuated the expression of SlSGR1 and SlSAG12 thereby delaying tomato fruit ripening, while SlWRKY6 phosphorylation increased the expression of target genes. As tomato fruits ripened, endogenous H2S production decreased, while SlMAPK4 expression increased. Therefore, our findings reveal a model in which SlWRKY6 persulfidation due to higher endogenous H2S levels in un-ripened fruit inhibits its ability to activate SlSGR1 and SlSAG12 expression, while SlWRKY6 phosphorylation by SlMAPK4 activates its transcriptional activity, thereby promoting tomato fruit ripening.
Collapse
Affiliation(s)
- Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meihui Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Conghe Zhang
- Winall Hi-Tech Seed Co., Ltd, Hefei 231283, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
20
|
Wang Z, Zhang Y, Wu Y, Lai D, Deng Y, Ju C, Sun L, Huang P, Wang C. CPK10 protein kinase regulates Arabidopsis tolerance to boron deficiency through phosphorylation and activation of BOR1 transporter. THE NEW PHYTOLOGIST 2024; 243:1795-1809. [PMID: 38622812 DOI: 10.1111/nph.19712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.
Collapse
Affiliation(s)
- Zhangqing Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanting Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaru Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Duoduo Lai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lv Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
21
|
Wang Z, Zhang W, Ding C, Xia Y, Yuan Z, Guo J, Yu J, Zhang B, Su X. RNA-seq reveals the gene expression in patterns in Populus × euramericana 'Neva' plantation under different precision water and fertilizer-intensive management. BMC PLANT BIOLOGY 2024; 24:759. [PMID: 39118015 PMCID: PMC11312740 DOI: 10.1186/s12870-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, 100023, P.R. China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiangtao Guo
- Heibei Agricultural University, Baoding, 071001, P.R. China
| | - Jinjin Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
22
|
Chen F, Ren P, Xu R, Zhang J, Liang C, Qiang G. FAM65A promotes the progression and growth of lung squamous cell carcinoma in vivo and vitro. BMC Cancer 2024; 24:944. [PMID: 39095743 PMCID: PMC11295694 DOI: 10.1186/s12885-024-12701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUNDS Currently, family with sequence similarity 65 member A (FAM65A) is reported as a pivotal regulator in various cancers. However, the effect of FAM65A in lung squamous cell carcinoma (LSCC) is still unclear, the prime objective of this research is to explore the role of FAM65A in LSCC. METHODS Gene expression data and correlated clinical information were downloaded from the public database and the expression of FAM65A was detected. The expression of FAM65A was also detected in our collected clinical samples and LSCC cell lines. Survival package of R language was used to determine the survival significance of FAM65A. Proteins expression level was determined via western blot assay. Cell function experiments and in vivo experiments were performed to explore the effect of FAM65A on LSCC cell biological behaviors. RESULTS FAM65A expression was significantly increased in LSCC clinical samples and cell lines. High FAM65A expression predicted poor prognosis in LSCC patients. After silencing FAM65A, the ability of LSCC cell proliferation, invasion and migration was decreased, and LSCC cell cycle was blocked. Moreover, in vivo experiments revealed that silencing FAM65A could inhibit LSCC cell proliferation. CONCLUSIONS High FAM65A expression could enhance proliferative, invasive and migratory abilities of LSCC. FAM65A might be a novel biomarker of LSCC.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Thoracic Surgery, Chine-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Rui Xu
- Department of Nuclear Medicine, Chine-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
23
|
Ngwenya SP, Moloi SJ, Shargie NG, Brown AP, Chivasa S, Ngara R. Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1874. [PMID: 38999714 PMCID: PMC11244414 DOI: 10.3390/plants13131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Plants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response. This study examined changes in the soluble extracellular sub-proteome of sorghum cell cultures exposed to a combination of sorbitol-induced osmotic stress and heat at 40 °C. The combined stress significantly reduced metabolic activity and altered protein secretion. While cells treated with osmotic stress alone had elevated proline content, the osmoprotectant in the combined treatment remained unchanged, confirming that sorghum cells exposed to combined stress utilise adaptive processes distinct from those invoked by the single stresses applied separately. Reactive oxygen species (ROS)-metabolising proteins and proteases dominated differentially expressed proteins identified in cells subjected to combined stress. ROS-generating peroxidases were suppressed, while ROS-degrading proteins were upregulated for protection from oxidative damage. Overall, our study provides protein candidates that could be used to develop crops better suited for an increasingly hot and dry climate.
Collapse
Affiliation(s)
- Samkelisiwe P Ngwenya
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| | - Sellwane J Moloi
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| | - Nemera G Shargie
- Agricultural Research Council-Grain Crops Institute, P. Bag X1251, Potchefstroom 2520, South Africa
| | - Adrian P Brown
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| |
Collapse
|
24
|
Gan P, Tang C, Lu Y, Ren C, Nasab HR, Kun X, Wang X, Li L, Kang Z, Wang X, Wang J. Quantitative phosphoproteomics reveals molecular pathway network in wheat resistance to stripe rust. STRESS BIOLOGY 2024; 4:32. [PMID: 38945963 PMCID: PMC11214938 DOI: 10.1007/s44154-024-00170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
Protein phosphorylation plays an important role in immune signaling transduction in plant resistance to pathogens. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), severely devastates wheat production. Nonetheless, the molecular mechanism of wheat resistance to stripe rust remains limited. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in wheat challenged by Pst. A total of 1537 and 2470 differentially accumulated phosphoproteins (DAPs) were identified from four early infection stage (6, 12, 18 and 24 h post-inoculation) in incompatible and compatible wheat-Pst interactions respectively. KEGG analysis revealed that Oxidative Phosphorylation, Phosphatidylinositol Signaling, and MAPK signaling processes are distinctively enriched in incompatible interaction, while Biosynthesis of secondary metabolites and RNA degradation process were significantly enriched in compatible interactions. In particular, abundant changes in phosphorylation levels of chloroplast proteins were identified, suggesting the regulatory role of photosynthesis in wheat-Pst interaction, which is further emphasized by protein-protein interaction (PPI) network analysis. Motif-x analysis identified [xxxxSPxxxx] motif, likely phosphorylation sites for defensive response-related kinases, and a new [xxxxSSxxxx] motif significantly enriched in incompatible interaction. The results shed light on the early phosphorylation events contributing to wheat resistance against Pst. Moreover, our study demonstrated that the phosphorylation levels of Nucleoside diphosphate kinase TaNAPK1 are upregulated at 12 hpi with CYR23 and at 24 hpi with CYR31. Transient silencing of TaNAPK1 was able to attenuate wheat resistance to CYR23 and CYR31. Our study provides new insights into the mechanisms underlying Pst-wheat interactions and may provide database to find potential targets for the development of new resistant varieties.
Collapse
Affiliation(s)
- Pengfei Gan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Lu
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Chenrong Ren
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department,Agricultural and Natural Resource Research and Education Center of Golestan, Agricultural Research,Education and Extension Organization (AREEO), Gorgan, Iran
| | - Xufeng Kun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangzhuang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Ji Z, Wang R, Zhang M, Chen L, Wang Y, Hui J, Hao S, Lv B, Jiang Q, Cao Y. Genome-Wide Identification and Expression Analysis of BrBASS Genes in Brassica rapa Reveals Their Potential Roles in Abiotic Stress Tolerance. Curr Issues Mol Biol 2024; 46:6646-6664. [PMID: 39057038 PMCID: PMC11275500 DOI: 10.3390/cimb46070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The bile acid sodium symporter (BASS) family plays an important role in transporting substances and coordinating plants' salt tolerance. However, the function of BASS in Brassica rapa has not yet been elucidated. In this study, eight BrBASS genes distributed on five chromosomes were identified that belonged to four subfamilies. Expression profile analysis showed that BrBASS7 was highly expressed in roots, whereas BrBASS4 was highly expressed in flowers. The promoter element analysis also identified several typical homeopathic elements involved in abiotic stress tolerance and stress-related hormonal responses. Notably, under salt stress, the expression of BrBASS2 was significantly upregulated; under osmotic stress, that of BrBASS4 increased and then decreased; and under cold stress, that of BrBASS7 generally declined. The protein-protein interaction analysis revealed that the BrBASS2 homologous gene AtBASS2 interacted with Nhd1 (N-mediated heading date-1) to alleviate salt stress in plants, while the BrBASS4 homologous gene AtBASS3 interacted with BLOS1 (biogenesis of lysosome-related organelles complex 1 subunit 1) via co-regulation with SNX1 (sorting nexin 1) to mitigate an unfavorable growing environment for roots. Further, Bra-miR396 (Bra-microRNA396) targeting BrBASS4 and BrBASS7 played a role in the plant response to osmotic and cold stress conditions, respectively. This research demonstrates that BrBASS2, BrBASS4, and BrBASS7 harbor great potential for regulating abiotic stresses. The findings will help advance the study of the functions of the BrBASS gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.J.)
| |
Collapse
|
26
|
Chen X, van de Sande JW, Ritmejeris J, Wen C, Brinkerhoff H, Laszlo AH, Albada B, Dekker C. Resolving sulfation PTMs on a plant peptide hormone using nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593138. [PMID: 38765996 PMCID: PMC11100766 DOI: 10.1101/2024.05.08.593138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Peptide phytohormones are decorated with post-translational modifications (PTMs) that are crucial for receptor recognition. Tyrosine sulfation on these hormones is essential for plant growth and development1. Measuring the occurrence and position of sulfotyrosine is, however, compromised by major technical challenges during isolation and detection2. We recently introduced a nanopore peptide sequencing method that sensitively detects PTMs at the single-molecule level3. By translocating PTM variants of the plant pentapeptide hormone phytosulfokine (PSK) through a nanopore, we here demonstrate accurate identification of sulfation and phosphorylation on the two tyrosine residues of PSK. Sulfation can be clearly detected and distinguished (>90%) from phosphorylation on the same residue. Moreover, the presence or absence of PTMs on the two close-by tyrosine residues can be accurately determined (>96% accuracy). Our findings demonstrate the extraordinary sensitivity of nanopore protein measurements, providing a new tool for identifying sulfation on peptide phytohormones and promising wider applications to identify protein PTMs.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
- These authors contributed equally
| | - Jasper W. van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, the Netherlands
- These authors contributed equally
| | - Justas Ritmejeris
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
- These authors contributed equally
| | - Chenyu Wen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | | | - Andrew H. Laszlo
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
27
|
Han M, Niu M, Gao T, Shen Y, Zhou X, Zhang Y, Liu L, Chai M, Sun G, Wang Y. Responsive Alternative Splicing Events of Opisthopappus Species against Salt Stress. Int J Mol Sci 2024; 25:1227. [PMID: 38279226 PMCID: PMC10816081 DOI: 10.3390/ijms25021227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Mengfan Niu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Li Liu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Min Chai
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Genlou Sun
- Department of Botany, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| |
Collapse
|
28
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
29
|
Poretsky E, Andorf CM, Sen TZ. PhosBoost: Improved phosphorylation prediction recall using gradient boosting and protein language models. PLANT DIRECT 2023; 7:e554. [PMID: 38124705 PMCID: PMC10732782 DOI: 10.1002/pld3.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Protein phosphorylation is a dynamic and reversible post-translational modification that regulates a variety of essential biological processes. The regulatory role of phosphorylation in cellular signaling pathways, protein-protein interactions, and enzymatic activities has motivated extensive research efforts to understand its functional implications. Experimental protein phosphorylation data in plants remains limited to a few species, necessitating a scalable and accurate prediction method. Here, we present PhosBoost, a machine-learning approach that leverages protein language models and gradient-boosting trees to predict protein phosphorylation from experimentally derived data. Trained on data obtained from a comprehensive plant phosphorylation database, qPTMplants, we compared the performance of PhosBoost to existing protein phosphorylation prediction methods, PhosphoLingo and DeepPhos. For serine and threonine prediction, PhosBoost achieved higher recall than PhosphoLingo and DeepPhos (.78, .56, and .14, respectively) while maintaining a competitive area under the precision-recall curve (.54, .56, and .42, respectively). PhosphoLingo and DeepPhos failed to predict any tyrosine phosphorylation sites, while PhosBoost achieved a recall score of .6. Despite the precision-recall tradeoff, PhosBoost offers improved performance when recall is prioritized while consistently providing more confident probability scores. A sequence-based pairwise alignment step improved prediction results for all classifiers by effectively increasing the number of inferred positive phosphosites. We provide evidence to show that PhosBoost models are transferable across species and scalable for genome-wide protein phosphorylation predictions. PhosBoost is freely and publicly available on GitHub.
Collapse
Affiliation(s)
- Elly Poretsky
- Agricultural Research Service, Crop Improvement and Genetics Research UnitU.S. Department of AgricultureAlbanyCAUnited States
| | - Carson M. Andorf
- Agricultural Research Service, Corn Insects and Crop Genetics ResearchU.S. Department of AgricultureAmesIAUnited States
- Department of Computer ScienceIowa State UniversityAmesIAUnited States
| | - Taner Z. Sen
- Agricultural Research Service, Crop Improvement and Genetics Research UnitU.S. Department of AgricultureAlbanyCAUnited States
- Department of BioengineeringUniversity of CaliforniaBerkeleyCAUnited States
| |
Collapse
|