1
|
Xue R, Liang S, Wan G. Hypoxia-related retinal/choroidal vascular disorders: Pathogenesis and mechanism. Chin Med J (Engl) 2025:00029330-990000000-01505. [PMID: 40176568 DOI: 10.1097/cm9.0000000000003569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 04/04/2025] Open
Affiliation(s)
- Rong Xue
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou, Henan 450052, China
| | - Shenzhi Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou, Henan 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Su S, Yang Y, Chen J, Zhang S, Yang X, Sang A. TLR4/TRIF/Caspase-8/Caspase-1 Pathway in Choroidal Endothelial Cells Promotes Choroidal Neovascularization. Curr Eye Res 2025; 50:203-212. [PMID: 39392113 DOI: 10.1080/02713683.2024.2409885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE The purpose of this study was to investigate the role and mechanism of caspase-8 in the development of choroidal neovascularization induced by age-related macular degeneration, with the aim of identifying a potential therapeutic target for neovascular age-related macular degeneration. METHODS Mouse models of laser photocoagulation-induced choroidal neovascularization and hypoxic human choroidal endothelial cells were utilized to examine the involvement of caspase-8 in choroidal neovascularization development. The toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8 pathway was explored in hypoxic human choroidal endothelial cells to elucidate its contribution to pathological angiogenesis. Various experimental techniques, including inhibition assays and immunoblotting analysis, were employed to assess the effects and mechanisms of caspase-8 activation. RESULTS Inhibition of caspase-8 demonstrated attenuated choroidal neovascularization development in mice subjected to laser photocoagulation. Activation of the toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8 pathway was observed in hypoxic human choroidal endothelial cells. Upon activation by the toll-like receptor 4/TIR domain-containing adaptor molecule 1 axis, caspase-8 directly cleaved caspase-1, leading to the cleavage of interleukin-1β and interleukin-18 by caspase-1. Consequently, activation of interleukin-1β and interleukin-18 through the toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8/caspase-1 pathway promoted the proliferative, migratory, and tube-forming abilities of hypoxic human choroidal endothelial cells. CONCLUSION The findings of this study indicate that caspase-8 plays a crucial role in promoting choroidal neovascularization by activating interleukin-1β and interleukin-18 through the toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8/caspase-1 pathway in choroidal endothelial cells. Therefore, targeting caspase-8 may hold promise as a therapeutic approach for neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Shu Su
- Department of Ophthalmology, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jia Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shenglai Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Aimin Sang
- Department of Ophthalmology, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Ebner LJA, Karademir D, Nötzli S, Wögenstein GM, Samardzija M, Grimm C. Oxygen-dependent alternative mRNA splicing and a cone-specific motor protein revealed by single-cell RNA sequencing in hypoxic retinas. Exp Eye Res 2025; 251:110190. [PMID: 39638278 DOI: 10.1016/j.exer.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Restricted oxygen supply in the aging eye may lead to hypoxic conditions in the outer retina and contribute not only to physiological aging but also to nonhereditary degenerative retinal diseases. To understand the hypoxic response of specific retinal cell types, we performed single-cell RNA sequencing of retinas isolated from mice exposed to hypoxia. Significantly upregulated expression of marker genes in hypoxic clusters confirmed a general transcriptional response to hypoxia. By focusing on the hypoxic response in photoreceptors, we identified and confirmed a kinesin motor protein (Kif4) that was specifically and strongly induced in hypoxic cones. In contrast, RNA-binding proteins Rbm3 and Cirbp were differentially expressed across clusters but demonstrated isoform switching in hypoxia. The resulting short variants of these gene transcripts are connected to epitranscriptomic regulation, a notion supported by the differential expression of writers, readers and erasers of m6A RNA methylations in the hypoxic retina. Our data indicate that retinal cells adapt to hypoxic conditions by adjusting their transcriptome at various levels including gene expression, alternative splicing and the epitranscriptome. Adaptational processes may be cell-type specific as exemplified by the cone-specific upregulation of Kif4 or general like alternative splicing of RNA binding proteins.
Collapse
Affiliation(s)
- Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Gabriele M Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Fang M, Ye L, Zhu Y, Huang L, Xu S. M6A Demethylase ALKBH5 in Human Diseases: From Structure to Mechanisms. Biomolecules 2025; 15:157. [PMID: 40001461 PMCID: PMC11853652 DOI: 10.3390/biom15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most abundant, dynamically reversible, and evolutionarily conserved internal chemical modification in eukaryotic RNA. It is emerging as critical for regulating gene expression at the post-transcriptional level by affecting RNA metabolism through, for example, pre-mRNA processing, mRNA decay, and translation. ALKBH5 has recently been identified as an endogenous m6A demethylase implicated in a multitude of biological processes. This review provides an overview of the structural and functional characteristics of ALKBH5 and the involvement of ALKBH5 in diverse human diseases, including metabolic, immune, reproductive, and nervous system disorders, as well as the development of inhibitors. In summation, this review highlights the current understanding of the structure, functions, and detailed mechanisms of ALKBH5 in various physiological and pathological processes and provides valuable insights for clinical applications and foundational research within related fields.
Collapse
Affiliation(s)
| | | | | | | | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Songshan Lake, Dongguan 523808, China; (M.F.); (L.Y.); (Y.Z.); (L.H.)
| |
Collapse
|
5
|
Jiang X, Liu C, Zhang Q, Lv Y, Lu C, Su W, Zhou J, Zhang H, Gong H, Liu Y, Yuan S, Chen Y, Qu D. Strategic delivery of rapamycin and ranibizumab with intravitreal hydrogel depot disrupts multipathway-driven angiogenesis loop for boosted wAMD therapy. J Control Release 2025; 377:239-255. [PMID: 39528095 DOI: 10.1016/j.jconrel.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Autophagic dysfunction-induced deterioration of the retinal microenvironment drives the progression of wet age-related macular degeneration (wAMD). The efficacy of single-target anti-VEGF antibodies in treating wAMD has long been suboptimal due to the intricate interplay between autophagy dysfunction, oxidative stress, and angiogenesis. Here, we introduce an intravitreal hydrogel depot, named Rab&Rapa-M@G, consisting of rapamycin-loaded microemulsion (Rapa-M, an mTOR inhibitor), ranibizumab (anti-VEGF antibody), and a thermosensitive hydrogel matrix. A single intravitreal injection of Rab&Rapa-M@G can sustainably deliver Rapa-M and ranibizumab to the retinal pigment epithelium for at least 14 days. This formulation significantly improves retinal autophagic flux homeostasis and reduces oxidative stress injury in wAMD mice by modulating the AMPK/mTOR/HIF-1α/VEGF and AMPK/ROS/HO-1/VEGF pathways. Consequently, it synergistically disrupts the "autophagic dysfunction-oxidative stress-angiogenesis" loop, leading to a remarkable reduction in choroidal neovascularization area and retinal damage compared to ranibizumab alone. Notably, the sequential administration of ranibizumab and Rab&Rapa-M@G further enhances the overall anti-wAMD efficacy, achieved through sequential delivery of Rab and Rapa, allowing for a more precise grasp of the treatment window. In conclusion, this hydrogel depot design, with its sequential and sustained delivery of mTOR inhibitors and anti-VEGF antibodies, offers a promising strategy for multi-target synergistic therapy in wAMD.
Collapse
Affiliation(s)
- Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chen Lu
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huiling Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Songtao Yuan
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
6
|
Corydon TJ, Bek T. Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration. Prog Retin Eye Res 2025; 104:101323. [PMID: 39672501 DOI: 10.1016/j.preteyeres.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention. The article reviews current knowledge of the background, pathophysiological mechanisms, technologies, limitations, and future directions for gene therapy aimed at modifying the synthesis of compounds involved in acquired and senescent retinal disease. The authors have contributed to the field by developing gene therapy to reduce the expression of vascular endothelial growth factor (VEGF), as well as multiple gene therapy for simultaneous downregulation of the synthesis of VEGF and upregulation of pigment epithelium-derived factor (PEDF) using adeno-associated virus (AAV) vectors. It is suggested that such multi-target gene therapy might be included in future treatments of retinal diseases where the underlying mechanisms are complex and cannot be attributed to one specific mediator. Such diseases might include dry AMD (dAMD) with geographic atrophy, but also diabetic macular edema (DME) and retinal vein occlusion (RVO). Gene therapy can be expected to be most beneficial for the patients in need of multiple intra-vitreal injections and in whom the therapeutic response is insufficient. It is concluded, that in parallel with basic research, there is a need for clinical studies aimed at identifying factors that can be used to identify patients who will benefit from gene therapy already at the time of diagnosis of the retinal disease.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Hoegh Guldbergs Gade 10, Aarhus University, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
7
|
Yao Z, Chen H. Everolimus in pituitary tumor: a review of preclinical and clinical evidence. Front Endocrinol (Lausanne) 2024; 15:1456922. [PMID: 39736867 PMCID: PMC11682973 DOI: 10.3389/fendo.2024.1456922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Although pituitary tumors (PTs) are mostly benign, some PTs are characterized by low surgical resection rates, high recurrence rates, and poor response to conventional treatments and profoundly affect patients' quality of life. Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis. It has been administered for various neuroendocrine tumors of the digestive tract, lungs, and pancreas. EVE not only suppresses the growth and proliferation of APT cells but also enhances their sensitivity to radiotherapy and chemotherapy. This review introduces the role of the PI3K/AKT/mTOR pathway in the development of APTs, comprehensively explores the current status of preclinical and clinical research of EVE in APTs, and discusses the blood-brain barrier permeability and safety of EVE.
Collapse
Affiliation(s)
- Zihong Yao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hui Chen
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Huang Y, Qiu H, Chen Q, Meng Z, Qiao D, Yue X. Exploring Potential Diagnostic Biomarkers for Mechanical Asphyxia in the Heart Based on Proteomics Technology. Int J Mol Sci 2024; 25:12710. [PMID: 39684422 DOI: 10.3390/ijms252312710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Mechanical asphyxia presents a challenging diagnostic issue in forensic medicine due to its often covert nature, and the signs visible during an autopsy are usually not specific. Despite some progress in understanding hypoxia's effects, traditional methods' inherent limitations might overlook new biomarkers in mechanical asphyxia. This study employed 4D-DIA proteomics to explore the protein expression profiles of cardiac samples under conditions of mechanical asphyxia. Proteomic analysis identified 271 and 371 differentially expressed proteins in the strangulation and suffocation groups, respectively, compared to the control group. Seventy-eight differentially expressed proteins were identified across different mechanical asphyxia groups compared to the control group. GO and KEGG analysis showed enrichment in pathways, including complement and coagulation cascades, cAMP and cGMP-PKG signaling pathways, inflammatory mediator regulation of TRP channels, and phagosomes. Through stringent selection based on protein interactions, ALKBH5, NAA10, and CLPB were identified as potential diagnostic biomarkers. ALKBH5 showed increased expression in asphyxia models, while NAA10 and CLPB were downregulated; these biomarker changes were validated in both animal models and human cardiac samples. This study highlights the potential of proteomics in discovering reliable biomarkers, which can enhance the specificity of mechanical asphyxia diagnosis in forensic practice, provide new insights into the pathophysiological mechanisms of mechanical asphyxia, and offer new perspectives for diagnosing mechanical asphyxia.
Collapse
Affiliation(s)
- Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hai Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zilin Meng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Zhu Y, Jin Y, He X, Chen J, Zhang Y, Wang J. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Cell Biol Toxicol 2024; 40:99. [PMID: 39557743 PMCID: PMC11573822 DOI: 10.1007/s10565-024-09947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
In the clinical setting, cisplatin-induced nephrotoxicity primarily manifests as acute kidney injury (AKI). Recent studies have indicated that ferroptosis, a type of iron-dependent cell death, is closely involved in the cisplatin nephrotoxicity. AlkB homologue 5 (ALKBH5), an N6-methyladenosine (m6A) eraser protein expressed in various tissues, including the kidneys, has been implicated in this process. However, the specific role of ALKBH5 in cisplatin-induced nephrotoxicity remains unknown. Our findings indicated that ALKBH5 was upregulated in cisplatin-induced AKI, and the in vivo study results were consistent with the results of the in vitro study. Additionally, ALKBH5 knockout in transgenic animals was found to mitigate cisplatin-induced renal dysfunction, whereas its knock-in exacerbated the effects. Our study revealed that ALKBH5 controls the traditional ferroptosis metabolic pathway, leading to worsening of AKI in experiments conducted both in vivo and in vitro. The efficacy of pharmacological intervention targeting ALKBH5 in AKI animal models was demonstrated, and ALKBH5-based gene therapy confirmed these findings and displayed renoprotective effects against AKI. In conclusion, this study highlighted the crucial role of ALKBH5 as a key regulator of AKI. Overall, our research demonstrates the significant impact of ALKBH5 in controlling ferroptosis in cisplatin-induced AKI, suggesting that focusing on ALKBH5 could be a promising approach for treating cisplatin-related kidney damage.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Traditional Chinese Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Xue He
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - JunYi Chen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Yao Zhang
- Department of Traditional Chinese Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - JingJing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China.
| |
Collapse
|
10
|
Guo Y, Xu N, Yan H, Li J, Huang L, Zhu L, Du W, Liu Z, Zhao M. Splice Variant of Retinal G-Protein-Coupled Receptor Deletion-Mediated Dysregulation of Autophagy Increases the Susceptibility to Age-Related Macular Degeneration-Like Defects. Ophthalmic Res 2024; 67:611-624. [PMID: 39406195 DOI: 10.1159/000541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024]
Abstract
INTRODUCTION The splice variant of retinal G-protein-coupled receptor deletion (RGR-d) is a persistent component of drusen and may be involved in the pathogenesis of dry age-related macular degeneration (AMD). Increasing evidence has demonstrated the critical role of autophagy in AMD. In this study, we investigated whether RGR-d disrupts autophagy in early dry AMD in vivo and in vitro. METHODS Fundus imaging and fluoroscopy were performed on RGR-d mice created by multiplex gene editing. The retina microstructure was evaluated by performing hematoxylin and eosin (H&E) staining as well as transmission electron microscopy (TEM). Retinal function was assessed by full-field electroretinography (ERG). After lentivirus transfection and stimulation, the permeability, phagocytosis, and tight junctions of ARPE-19 cells were evaluated. Western blotting of ATG5, Beclin-1, LC3II/I, and P62 was performed to detect the changes in autophagy pathways. RESULTS Atrophy and patchy penetrating hyperfluorescent foci, consistent with early AMD-like defects, were observed in the fundus of 12-month-old RGR-d mice. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. TEM analysis showed some diffuse granular deposits. And the morphology of choroidal microvascular endothelial cells was degraded and distorted. The morphology of the photoreceptor outer segments showed structural damage, and Bruch's membrane was thickened. ERG indicated that the photoreceptor of RGR-d mice were dysfunctional. Changes in autophagy-related protein expression were observed in the retinal pigment epithelium and retinal neurepithelium, and autophagy regulation was decreased. Palmitic acid (PA) stimulation caused permeability, phagocytosis, and tight junction dysfunction in cells overexpressing RGR-d. Beclin-1 and LC3II/I expression levels were significantly decreased and that of P62 was elevated in RGR-d cells after PA stimulation. CONCLUSION RGR-d disrupts the autophagy pathway, causing the development of an early AMD-like pathophysiology.
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Eye Diseases and Optometry Institute, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Huichao Yan
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhiming Liu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Wang W, Li H, Qian Y, Li M, Deng M, Bi D, Zou J. ALKBH5 Regulates Corneal Neovascularization by Mediating FOXM1 M6A Demethylation. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39441582 PMCID: PMC11512564 DOI: 10.1167/iovs.65.12.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose This study aims to explore the regulatory role and potential mechanisms of ALKBH5-mediated N6-methyladenosine (m6A) demethylation modification in corneal neovascularization (CNV). Methods A mouse CNV model was established through corneal alkali burns. Total m6A levels were measured using an m6A RNA methylation quantification kit. The mRNA expression of candidate m6A-related enzymes was quantified by quantitative RT-PCR. Small interfering RNA targeting ALKBH5 was injected subconjunctivally into alkali-burned mice. The CNV area, corneal epithelial thickness, and pathological changes were evaluated. Protein expression was detected by western blot and immunofluorescence. Human umbilical vein endothelial cells (HUVECs) were treated with IL-6. Plasmid transfection knocked down ALKBH5 or overexpressed FOXM1 in IL-6-induced HUVECs. The assays of CCK8, wound healing, and tube formation evaluated the cell proliferation, migration, and tube formation abilities, respectively. The dual-luciferase assay examined the binding between ALKBH5 and FOXM1. Methylated RNA immunoprecipitation-qPCR detected the m6A levels of FOXM1. Results Significant CNV was observed on the seventh day. Total m6A levels were reduced, and ALKBH5 expression was increased in CNV corneas and IL-6-induced HUVECs. ALKBH5 knockdown alleviated corneal neovascularization and inflammation and countered IL-6-induced promotion of cell proliferation, migration, and tube formation in HUVECs. ALKBH5 depletion increased m6A levels and decreased VEGFA and CD31 expression both in vivo and in vitro. This knockdown in HUVECs elevated m6A levels on FOXM1 mRNA while reducing its mRNA and protein expression. Notably, FOXM1 overexpression can reverse ALKBH5 depletion effects. Conclusions ALKBH5 modulates FOXM1 m6A demethylation, influencing CNV progression and highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Meng X, Wang Y, Zhao W, Chen Y, Li W, Peng K, Xu H, Yang Y, Shan X, Huo W, Liu H, Ji F. Identification of differential m6A RNA methylomes and ALKBH5 as a potential prevention target in the developmental neurotoxicity induced by multiple sevoflurane exposures. FASEB J 2024; 38:e23793. [PMID: 39003634 DOI: 10.1096/fj.202400664r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Sevoflurane, as a commonly used inhaled anesthetic for pediatric patients, has been reported that multiple sevoflurane exposures are associated with a greater risk of developing neurocognitive disorder. N6-Methyladenosine (m6A), as the most common mRNA modification in eukaryotes, has emerged as a crucial regulator of brain function in processes involving synaptic plasticity, learning and memory, and neurodevelopment. Nevertheless, the relevance of m6A RNA methylation in the multiple sevoflurane exposure-induced developmental neurotoxicity remains mostly elusive. Herein, we evaluated the genome-wide m6A RNA modification and gene expression in hippocampus of mice that received with multiple sevoflurane exposures using m6A-sequencing (m6A-seq) and RNA-sequencing (RNA-seq). We discovered 19 genes with differences in the m6A methylated modification and differential expression in the hippocampus. Among these genes, we determined that a total of nine differential expressed genes may be closely associated with the occurrence of developmental neurotoxicity induced by multiple sevoflurane exposures. We further found that the alkB homolog 5 (ALKBH5), but not methyltransferase-like 3 (METTL3) and Wilms tumor 1-associated protein (WTAP), were increased in the hippocampus of mice that received with multiple sevoflurane exposures. And the IOX1, as an inhibitor of ALKBH5, significantly improved the learning and memory defects and reduced neuronal damage in the hippocampus of mice induced by multiple sevoflurane exposures. The current study revealed the role of m6A methylated modification and m6A-related regulators in sevoflurane-induced cognitive impairment, which might provide a novel insight into identifying biomarkers and therapeutic strategies for inhaled anesthetic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Xiaowen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yichan Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Weiming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ying Chen
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenting Li
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hanbing Xu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yufan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Xisheng Shan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Wenwen Huo
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Huayue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Ambulatory Surgery Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Liu G, Tan M, Liu R, Lu X, Jiang X, Bai Y, Guo Z, Lu F. Identification of the CDH18 gene associated with age-related macular degeneration using weighted gene co-expression network analysis. Front Genet 2024; 15:1378340. [PMID: 39081806 PMCID: PMC11286549 DOI: 10.3389/fgene.2024.1378340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose: Age-related macular degeneration (AMD) is a chronic and progressive macular degenerative disease that culminates in a gradual deterioration of central vision. Despite its prevalence, the key biomarkers for AMD have not yet been fully elucidated. In this study, we aimed to efficiently identify biomarkers crucial for diagnosing AMD. Methods: Three datasets pertaining to retinal pigment epithelium (RPE)/choroid tissues associated with AMD were selected from the GEO database. The GSE50195 dataset was utilized to conduct weighted gene co-expression network analysis (WGCNA) for identifying module genes linked to AMD. KEGG and GO enrichment analyses were subsequently conducted on these module genes. GSE29801 and GSE135092 datasets were subjected to differential expression analysis to pinpoint the DEGs intersecting with the module genes. Subsequently, wet AMD (wAMD) and dry AMD (dAMD) mouse models were developed, from which RPE/choroid tissues were harvested to validate the hub genes via RT-qPCR and Western blot. Results: Using the WGCNA, we selected the "antiquewhite4" module (r = 0.91 and p = 7e-07), which contains a total of 325 genes. Through the intersection of module genes with DEGs, nine hub genes were identified. Pathways involved in complement and coagulation cascades, ECM-receptor interactions, unsaturated fatty acid biosynthesis, and fatty acid elongation play important roles in AMD. Notably, CDH18 demonstrated notable variance across all three datasets. Post validation using RT-qPCR experiments revealed a significant downregulation of CDH18 in both dAMD and wAMD. EGLN3 was expressed at low levels in wAMD. In dAMD, EYA2, LTB, and PODXL were significantly downregulated, whereas APOC1 was notably upregulated. Western blot confirmed that CDH18 was lowly expressed in dAMD and wAMD mouse models. Conclusion: CDH18 was identified as the key gene involved in the pathogenesis of AMD. An imbalance of the complement and coagulation cascades is a potential mechanism of AMD. This study provides a novel idea for diagnosing and treating AMD in the future.
Collapse
Affiliation(s)
- Guina Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingqi Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Rui Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejin Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Wu S, Li F, Mo K, Huang H, Yu Y, Huang Y, Liu J, Li M, Tan J, Lin Z, Han Z, Wang L, Ouyang H. IGF2BP2 Maintains Retinal Pigment Epithelium Homeostasis by Stabilizing PAX6 and OTX2. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 38861275 PMCID: PMC11174093 DOI: 10.1167/iovs.65.6.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose N6-methyladenosine (m6A) methylation is a chemical modification that occurs on RNA molecules, where the hydrogen atom of adenine (A) nucleotides is replaced by a methyl group, forming N6-methyladenosine. This modification is a dynamic and reversible process that plays a crucial role in regulating various biological processes, including RNA stability, transport, translation, and degradation. Currently, there is a lack of research on the role of m6A modifications in maintaining the characteristics of RPE cells. m6A readers play a crucial role in executing the functions of m6A modifications, which prompted our investigation into their regulatory roles in the RPE. Methods Phagocytosis assays, immunofluorescence staining, flow cytometry experiments, β-galactosidase staining, and RNA sequencing (RNA-seq) were conducted to assess the functional and cellular characteristics changes in retinal pigment epithelium (RPE) cells following short-hairpin RNA-mediated knockdown of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). RNA-seq and ultraviolet crosslinking immunoprecipitation with high-throughput sequencing (HITS-CLIP) were employed to identify the target genes regulated by IGF2BP2. adeno-associated virus (AAV) subretinal injection was performed in 6- to 8-week-old C57 mice to reduce IGF2BP2 expression in the RPE, and the impact of IGF2BP2 knockdown on mouse visual function was assessed using immunofluorescence, quantitative real-time PCR, optical coherence tomography, and electroretinography. Results IGF2BP2 was found to have a pronounced effect on RPE phagocytosis. Subsequent in-depth exploration revealed that IGF2BP2 modulates the mRNA stability of PAX6 and OTX2, and the loss of IGF2BP2 induces inflammatory and aging phenotypes in RPE cells. IGF2BP2 knockdown impaired RPE function, leading to retinal dysfunction in vivo. Conclusions Our data suggest a crucial role of IGF2BP2 as an m6A reader in maintaining RPE homeostasis by regulating the stability of PAX6 and OTX2, making it a potential target for preventing the occurrence of retinal diseases related to RPE malfunction.
Collapse
Affiliation(s)
- Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Fuxi Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yankun Yu
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Geng Y, Hua H, Xia Y, Zhou J, He J, Xu X, Zhao J. miR-199a-5p modulates choroidal neovascularization by regulating Wnt7b/Wnt/β-catenin signaling pathway. J Mol Histol 2024; 55:359-370. [PMID: 38662168 DOI: 10.1007/s10735-024-10194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), β-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, β-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/β-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/β-catenin signaling pathway, which may serve as a promising therapy target of CNV.
Collapse
Affiliation(s)
- Yu Geng
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - HaiRong Hua
- Department of Pathology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yuan Xia
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Jie Zhou
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Jian He
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - XingYu Xu
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - JianFeng Zhao
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
17
|
Yang Y, Jiang X, Chen J, Liu L, Liu G, Sun K, Liu W, Zhu X, Guan Q. The m 6A reader YTHDC2 maintains visual function and retinal photoreceptor survival through modulating translation of PPEF2 and PDE6B. J Genet Genomics 2024; 51:208-221. [PMID: 38157933 DOI: 10.1016/j.jgg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m6A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m6A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5'-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.
Collapse
Affiliation(s)
- Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Junyao Chen
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Guo Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Qiuyue Guan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
18
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|