1
|
Zhang Y, Jiang W, Li T, Xu H, Zhu Y, Fang K, Ren X, Wang S, Chen Y, Zhou Y, Zhu F. SubCELL: the landscape of subcellular compartment-specific molecular interactions. Nucleic Acids Res 2025; 53:D738-D747. [PMID: 39373488 PMCID: PMC11701543 DOI: 10.1093/nar/gkae863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
The subcellular compartment-specific molecular interactions (SCSIs) are the building blocks for most molecular functions, biological processes and disease pathogeneses. Extensive experiments have therefore been conducted to accumulate the valuable information of SCSIs, but none of the available databases has been constructed to describe those data. In this study, a novel knowledge base SubCELL is thus introduced to depict the landscape of SCSIs among DNAs/RNAs/proteins. This database is UNIQUE in (a) providing, for the first time, the experimentally-identified SCSIs, (b) systematically illustrating a large number of SCSIs inferred based on well-established method and (c) collecting experimentally-determined subcellular locations for the DNAs/RNAs/proteins of diverse species. Given the essential physiological/pathological role of SCSIs, the SubCELL is highly expected to have great implications for modern molecular biological study, which can be freely accessed with no login requirement at: https://idrblab.org/subcell/.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Wanghao Jiang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Teng Li
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hangwei Xu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yimiao Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kerui Fang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Ren
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
2
|
Suzuki S, Mashiko T, Tsukamoto Y, Oya M, Kotani Y, Okawara S, Matsumoto T, Mizue Y, Takeuchi H, Okajima T, Itoh M. The N-acetylglucosaminyltransferase Radical fringe contributes to defects in JAG1-dependent turnover and signaling of NOTCH3 CADASIL mutants. J Biol Chem 2024; 300:107787. [PMID: 39303912 PMCID: PMC11525139 DOI: 10.1016/j.jbc.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic vascular dementia characterized by age-related degeneration of vascular mural cells and accumulation of a NOTCH3 mutant protein. NOTCH3 functions as a signaling receptor, activating downstream gene expression in response to ligands like JAG1 and DLL4, which regulate the development and survival of mural cells. This signal transduction process is thought to be connected with NOTCH3 endocytic degradation. However, the specific cellular circumstances that modulate turnover and signaling efficacy of NOTCH3 mutant protein remain largely unknown. Here, we found elevated NOTCH3 and Radical fringe (RFNG) expression in senescent human pericyte cells. We then investigated impacts of RFNG on glycosylation, degradation, and signal activity of three NOTCH3 CADASIL mutants (R90C, R141C, and C185R) in EGF-like repeat-2, 3, and 4, respectively. Liquid chromatography with tandem mass spectrometry analysis showed that RFNG modified NOTCH3 WT and C185R to different degrees. Additionally, coculture experiments demonstrated that RFNG significantly promoted JAG1-dependent degradation of NOTCH3 WT but not that of R141C and C185R mutants. Furthermore, RFNG exhibited a greater inhibitory effect on JAG1-mediated activity of NOTCH3 R141C and C185R compared to that of NOTCH3 WT and R90C. In summary, our findings suggest that NOTCH3 R141C and C185R mutant proteins are relatively susceptible to accumulation and signaling impairment under cellular conditions of RFNG and JAG1 coexistence.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Taiki Mashiko
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Miyu Oya
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Kotani
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Saki Okawara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takemi Matsumoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Mizue
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
3
|
Wang M, Yu F, Zhang Y, Li P. Novel insights into Notch signaling in tumor immunity: potential targets for cancer immunotherapy. Front Immunol 2024; 15:1352484. [PMID: 38444855 PMCID: PMC10912471 DOI: 10.3389/fimmu.2024.1352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Notch signaling pathway is a highly conserved system of cell-to-cell communication that participates in various biological processes, such as stem cell maintenance, cell fate decision, cell proliferation and death during homeostasis and development. Dysregulation of Notch signaling has been associated with many aspects of cancer biology, such as maintenance of cancer stem-like cells (CSCs), cancer cell metabolism, angiogenesis and tumor immunity. Particularly, Notch signaling can regulate antitumor or pro-tumor immune cells within the tumor microenvironment (TME). Currently, Notch signaling has drawn significant attention in the therapeutic development of cancer treatment. In this review, we focus on the role of Notch signaling pathway in remodeling tumor immune microenvironment. We describe the impact of Notch signaling on the efficacy of cancer immunotherapies. Furthermore, we summarize the results of relevant preclinical and clinical trials of Notch-targeted therapeutics and discuss the challenges in their clinical application in cancer therapy. An improved understanding of the involvement of Notch signaling in tumor immunity will open the door to new options in cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|