1
|
Bernaleau L, Drobek M, Blank F, Walch P, Delacrétaz M, Drobek A, Monguió-Tortajada M, Broz P, Majer O, Rebsamen M. CCDC134 controls TLR biogenesis through the ER chaperone Gp96. J Exp Med 2025; 222:e20240825. [PMID: 39656203 PMCID: PMC11629888 DOI: 10.1084/jem.20240825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Toll-like receptors (TLRs) are central to initiate immune responses against invading pathogens. To ensure host defense while avoiding aberrant activation leading to pathogenic inflammation and autoimmune diseases, TLRs are tightly controlled by multilevel regulatory mechanisms. Through a loss-of-function genetic screen in a reporter cell line engineered to undergo cell death upon TLR7-induced IRF5 activation, we identified here CCDC134 as an essential factor for TLR responses. CCDC134 deficiency impaired endolysosomal TLR-induced NF-κB, MAPK, and IRF5 activation, as well as downstream production of proinflammatory cytokines and type I interferons. We further demonstrated that CCDC134 is an endoplasmic reticulum (ER)-resident interactor of Gp96 (HSP90B1/Grp94), an ER chaperone essential for folding and trafficking of plasma membrane and endolysosomal TLRs. CCDC134 controlled Gp96 stability as its loss led to Gp96 hyperglycosylation and ER-associated protein degradation (ERAD)-mediated clearance. Accordingly, CCDC134 deficiency impaired the folding, maturation, and trafficking of TLRs, resulting in blunted inflammatory responses upon stimulation. Altogether, this study reveals CCDC134 as a central regulator of the chaperone Gp96, thereby controlling TLR biogenesis and responses.
Collapse
Affiliation(s)
- Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Michaela Drobek
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Fenja Blank
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Philipp Walch
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ales Drobek
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
2
|
Harrison AG, Yang D, Cahoon JG, Geng T, Cao Z, Karginov TA, Hu Y, Li X, Chiari CC, Qyang Y, Vella AT, Fan Z, Vanaja SK, Rathinam VA, Witczak CA, Bogan JS, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nat Immunol 2024; 25:2234-2246. [PMID: 39567760 DOI: 10.1038/s41590-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2024] [Indexed: 11/22/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is trapped at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 translocation, sequestration of RLRs and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tingting Geng
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Xin Li
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Conner C Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan S Bogan
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
3
|
Bharadwaj R, Jaiswal S, Silverman N. Cytosolic delivery of innate immune agonists. Trends Immunol 2024; 45:1001-1014. [PMID: 39567309 PMCID: PMC11624987 DOI: 10.1016/j.it.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Solute carrier proteins (SLCs) are pivotal for maintaining cellular homeostasis by transporting small molecules across cellular membranes. Recent discoveries have uncovered their involvement in modulating innate immunity, particularly within the cytosol. We review emerging evidence that links SLC transporters to cytosolic innate immune recognition and highlight their role in regulating inflammation. We explore how SLC transporters influence the activation of endosomal Toll-like receptors, cytosolic NODs, and STING sensors. Understanding the contribution of SLCs to innate immune recognition provides insight into their fundamental biological functions and opens new avenues to develop possible therapeutic interventions for autoimmune and inflammatory diseases. This review aims to discuss current knowledge and identify key gaps in this rapidly evolving field.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Swati Jaiswal
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Toyama-Sorimachi N. New approaches to the control of chronic inflammatory diseases with a focus on the endolysosomal system of immune cells. Int Immunol 2024; 37:15-24. [PMID: 38946351 PMCID: PMC11587895 DOI: 10.1093/intimm/dxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic inflammation is implicated in many types of diseases, including cardiovascular, neurodegenerative, metabolic, and immune disorders. The search for therapeutic targets to control chronic inflammation often involves narrowing down the various molecules associated with pathology that have been discovered by various omics analyses. Herein, a different approach to identify therapeutic targets against chronic inflammation is proposed and one such target is discussed as an example. In chronically inflamed tissues, a large number of cells receive diverse proinflammatory signals, the intracellular signals are intricately integrated, and complicated intercellular interactions are orchestrated. This review focuses on effectively blocking this chaotic inflammatory signaling network via the endolysosomal system, which acts as a cellular signaling hub. In endolysosomes, the inflammatory signals mediated by pathogen sensors, such as Toll-like receptors, and the signals from nutrient and metabolic pathways are integrally regulated. Disruption of endolysosome signaling results in a strong anti-inflammatory effect by disrupting various signaling pathways, including pathogen sensor-mediated signals, in multiple immune cells. The endolysosome-resident amino acid transporter, solute carrier family 15 member 4 (SLC15A4), which plays an important role in the regulation of endolysosome-mediated signals, is a promising therapeutic target for several inflammatory diseases, including autoimmune diseases. The mechanisms by which SLC15A4 regulates inflammatory responses may provide a proof of concept for the efficacy of therapeutic strategies targeting immune cell endolysosomes.
Collapse
Affiliation(s)
- Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Stocks CJ, Li X, Stow JL. New advances in innate immune endosomal trafficking. Curr Opin Cell Biol 2024; 89:102395. [PMID: 38970837 DOI: 10.1016/j.ceb.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
The exocytic and endocytic intracellular trafficking pathways in innate immune cells are known for mediating the secretion of key inflammatory mediators or the internalization of growth factors, nutrients, antigens, cell debris, pathogens and even therapeutics, respectively. Inside cells, these pathways are intertwined as an elaborate network that supports the regulation of immune functions. Endosomal membranes host dynamic platforms for molecular complexes that control signaling and inflammatory responses. High content screens, coupled with elegant microscopy across the scale of resolving molecular complexes to tracking live cellular organelles, have been employed to generate the studies highlighted here. With a focus on deactivation of STING, scaffolding by SLC15A4/TASL complexes and macropinosome shrinkage via the chloride channel protein TMEM206, new studies are identifying molecules, molecular interactions and mechanisms for immune regulation throughout endosomal pathways.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xichun Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Wang P, Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Chiari C, Li X, Qyang Y, Vella A, Fan Z, Vanaja SK, Rathinam V, Witczak C, Bogan J. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. RESEARCH SQUARE 2024:rs.3.rs-3373803. [PMID: 38883790 PMCID: PMC11177981 DOI: 10.21203/rs.3.rs-3373803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
|
8
|
Yang Y, Zhang X, Jing L, Xiao Y, Gao Y, Hu Y, Jia S, Zhou G, Xiong H, Dong G. MDSC-derived S100A8/9 contributes to lupus pathogenesis by promoting TLR7-mediated activation of macrophages and dendritic cells. Cell Mol Life Sci 2024; 81:110. [PMID: 38429401 PMCID: PMC10907481 DOI: 10.1007/s00018-024-05155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Lina Jing
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Shujiao Jia
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Guangxi Zhou
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
9
|
Pereira M, Ramalho T, Andrade WA, Durso DF, Souza MC, Fitzgerald KA, Golenbock DT, Silverman N, Gazzinelli RT. The IRAK1/IRF5 axis initiates IL-12 response by dendritic cells and control of Toxoplasma gondii infection. Cell Rep 2024; 43:113795. [PMID: 38367238 PMCID: PMC11559090 DOI: 10.1016/j.celrep.2024.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Theresa Ramalho
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Warrison A Andrade
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Danielle F Durso
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria C Souza
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Douglas T Golenbock
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
11
|
Custódio TF, Guédez G, Löw C. Transient Co-expression of Membrane Protein Complexes in Mammalian Cells. Methods Mol Biol 2024; 2810:11-28. [PMID: 38926270 DOI: 10.1007/978-1-0716-3878-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Membrane proteins are essential components of biological membranes with key roles in cellular processes such as nutrient transport, cell communication, signaling, or energy conversion. Due to their crucial functions, membrane proteins and their complexes are often targets for therapeutic interventions. Expression and purification of membrane proteins are often a bottleneck to yield sufficient material for structural studies and further downstream characterization. Taking advantage of the Expi293 expression system for the production of eukaryotic proteins, we present a very efficient and fast protocol for the co-expression of a membrane complex. Here, we use transient transfection to co-express the membrane transporter PHT1 with its adaptor protein TASL. To allow the simultaneous screening of different proteins, constructs, or interaction partners, we make use of the Twin-Strep magnetic system. The protocol can be applied for small-scale screening of any membrane protein alone or co-expressed with interacting partners followed by large-scale production and purification of a potential membrane protein complex.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany.
| | - Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany.
| |
Collapse
|
12
|
Singh MK, Maiti GP, Reddy-Rallabandi H, Fazel-Najafabadi M, Looger LL, Nath SK. A Non-Coding Variant in SLC15A4 Modulates Enhancer Activity and Lysosomal Deacidification Linked to Lupus Susceptibility. FRONTIERS IN LUPUS 2023; 1:1244670. [PMID: 38317862 PMCID: PMC10843804 DOI: 10.3389/flupu.2023.1244670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic basis. Despite the identification of several single nucleotide polymorphisms (SNPs) near the SLC15A4 gene that are significantly associated with SLE across multiple populations, specific causal SNP(s) and molecular mechanisms responsible for disease susceptibility are unknown. To address this gap, we employed bioinformatics, expression quantitative trait loci (eQTLs), and 3D chromatin interaction analysis to nominate a likely functional variant, rs35907548, in an active intronic enhancer of SLC15A4. Through luciferase reporter assays followed by chromatin immunoprecipitation (ChIP)-qPCR, we observed significant allele-specific enhancer effects of rs35907548 in diverse cell lines. The rs35907548 risk allele T is associated with increased regulatory activity and target gene expression, as shown by eQTLs and chromosome conformation capture (3C)-qPCR. The latter revealed long-range chromatin interactions between the rs35907548 enhancer and the promoters of SLC15A4, GLTLD1, and an uncharacterized lncRNA. The enhancer-promoter interactions and expression effects were validated by CRISPR/Cas9 knock-out (KO) of the locus in HL60 promyeloblast cells. KO cells also displayed dramatically dysregulated endolysosomal pH regulation. Together, our data show that the rs35907548 risk allele affects multiple aspects of cellular physiology and may directly contribute to SLE.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| | - Guru Prashad Maiti
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| | | | - Mehdi Fazel-Najafabadi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| | - Loren L. Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla CA, USA
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| |
Collapse
|
13
|
Boeszoermenyi A, Bernaleau L, Chen X, Kartnig F, Xie M, Zhang H, Zhang S, Delacrétaz M, Koren A, Hopp AK, Dvorak V, Kubicek S, Aletaha D, Yang M, Rebsamen M, Heinz LX, Superti-Furga G. A conformation-locking inhibitor of SLC15A4 with TASL proteostatic anti-inflammatory activity. Nat Commun 2023; 14:6626. [PMID: 37863876 PMCID: PMC10589233 DOI: 10.1038/s41467-023-42070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Dysregulation of pathogen-recognition pathways of the innate immune system is associated with multiple autoimmune disorders. Due to the intricacies of the molecular network involved, the identification of pathway- and disease-specific therapeutics has been challenging. Using a phenotypic assay monitoring the degradation of the immune adapter TASL, we identify feeblin, a chemical entity which inhibits the nucleic acid-sensing TLR7/8 pathway activating IRF5 by disrupting the SLC15A4-TASL adapter module. A high-resolution cryo-EM structure of feeblin with SLC15A4 reveals that the inhibitor binds a lysosomal outward-open conformation incompatible with TASL binding on the cytoplasmic side, leading to degradation of TASL. This mechanism of action exploits a conformational switch and converts a target-binding event into proteostatic regulation of the effector protein TASL, interrupting the TLR7/8-IRF5 signaling pathway and preventing downstream proinflammatory responses. Considering that all components involved have been genetically associated with systemic lupus erythematosus and that feeblin blocks responses in disease-relevant human immune cells from patients, the study represents a proof-of-concept for the development of therapeutics against this disease.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Min Xie
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haobo Zhang
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann-Katrin Hopp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, Guangdong, China
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Chen X, Xie M, Zhang S, Monguió-Tortajada M, Yin J, Liu C, Zhang Y, Delacrétaz M, Song M, Wang Y, Dong L, Ding Q, Zhou B, Tian X, Deng H, Xu L, Liu X, Yang Z, Chang Q, Na J, Zeng W, Superti-Furga G, Rebsamen M, Yang M. Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling. Nat Commun 2023; 14:6627. [PMID: 37863913 PMCID: PMC10589346 DOI: 10.1038/s41467-023-42210-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.
Collapse
Affiliation(s)
- Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Min Xie
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | | | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chang Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Life Science Academy, 102209, Beijing, China
| | - Youqi Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, 100853, Beijing, China
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mingyue Song
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yixue Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Dong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Xiaolin Tian
- MOE Key laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Haiteng Deng
- MOE Key laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lina Xu
- Metabolomics and Lipidomics Center at Tsinghua-National Protein Science Facility, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaohui Liu
- Metabolomics and Lipidomics Center at Tsinghua-National Protein Science Facility, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zi Yang
- Beijing Advanced Innovation Center for Structural Biology, Technology for Protein Research, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qing Chang
- Beijing Advanced Innovation Center for Structural Biology, Technology for Protein Research, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenwen Zeng
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Kobayashi T, Toyama-Sorimachi N. Metabolic control from the endolysosome: lysosome-resident amino acid transporters open novel therapeutic possibilities. Front Immunol 2023; 14:1243104. [PMID: 37781390 PMCID: PMC10540624 DOI: 10.3389/fimmu.2023.1243104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Amino acid transporters are generally recognized as machinery that transport amino acids from the extracellular environment into the cytoplasm. Although their primary function is the uptake of amino acids to supply the cell with nutrients and energy, endolysosome-resident amino acid (EL-aa) transporters possess several unique functions in accordance with their localization in intracellular vesicular membranes. They play pivotal roles in the maintenance of metabolic homeostasis via direct involvement in the amino acid sensing pathway, which regulates the activity of mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of cellular metabolism. Additionally, some EL-aa transporters contribute to the maintenance of dynamic homeostasis of endolysosomes, including the regulation of endolysosomal acidity, by carrying amino acids out of endolysosomes. In addition, EL-aa transporters act as a scaffold to gather signaling molecules and multiple enzymes to control cellular metabolism on the endolysosomal membrane. Among EL-aa transporters, solute carrier family 15 member 4 (SLC15A4) is preferentially expressed in immune cells, including macrophages, dendritic cells, and B cells, and plays a key role in the integration of metabolic and inflammatory signals. In this review, we summarize our recent findings on EL-aa transporter contributions to inflammatory and metabolic signaling in the endolysosomes of immune cells by focusing on the SLC15 family, including SLC15A4 and SLC15A3, and discuss their uniqueness and universality. We also discuss the potential of targeting these EL-aa transporters in immune cells for the development of novel therapeutic strategies for inflammatory diseases. Because these transporters are highly expressed in immune cells and significantly alter the functions of immune cells, targeting them would provide a great advantage in ensuring a wide safety margin.
Collapse
Affiliation(s)
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
16
|
Custódio TF, Killer M, Yu D, Puente V, Teufel DP, Pautsch A, Schnapp G, Grundl M, Kosinski J, Löw C. Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Nat Commun 2023; 14:5696. [PMID: 37709742 PMCID: PMC10502012 DOI: 10.1038/s41467-023-41420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
PHT1 is a histidine /oligopeptide transporter with an essential role in Toll-like receptor innate immune responses. It can act as a receptor by recruiting the adaptor protein TASL which leads to type I interferon production via IRF5. Persistent stimulation of this signalling pathway is known to be involved in the pathogenesis of systemic lupus erythematosus (SLE). Understanding how PHT1 recruits TASL at the molecular level, is therefore clinically important for the development of therapeutics against SLE and other autoimmune diseases. Here we present the Cryo-EM structure of PHT1 stabilized in the outward-open conformation. By combining biochemical and structural modeling techniques we propose a model of the PHT1-TASL complex, in which the first 16 N-terminal TASL residues fold into a helical structure that bind in the central cavity of the inward-open conformation of PHT1. This work provides critical insights into the molecular basis of PHT1/TASL mediated type I interferon production.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Maxime Killer
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Dingquan Yu
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Virginia Puente
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Daniel P Teufel
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Alexander Pautsch
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Marc Grundl
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
| |
Collapse
|