1
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Kline SN, Saito Y, Archer NK. Staphylococcus aureus Proteases: Orchestrators of Skin Inflammation. DNA Cell Biol 2024; 43:483-491. [PMID: 38957987 PMCID: PMC11535466 DOI: 10.1089/dna.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Skin homeostasis relies on a delicate balance between host proteases and protease inhibitors along with those secreted from microbial communities, as disruption to this harmony contributes to the pathogenesis of inflammatory skin disorders, including atopic dermatitis and Netherton's syndrome. In addition to being a prominent cause of skin and soft tissue infections, the gram-positive bacterium Staphylococcus aureus is a key player in inflammatory skin conditions due to its array of 10 secreted proteases. Herein we review how S. aureus proteases augment the development of inflammation in skin disorders. These mechanisms include degradation of skin barrier integrity, immune dysregulation and pruritis, and impairment of host defenses. Delineating the diverse roles of S. aureus proteases has the potential to reveal novel therapeutic strategies, such as inhibitors of proteases or their cognate target, as well as neutralizing vaccines to alleviate the burden of inflammatory skin disorders in patients.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoshine Saito
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Yang XP, Liu YY, Zhang CY, Huang KK, Han SS, Liang BY, Lin Y. An Observational Study: Association Between Atopic Dermatitis and Bacterial Colony of the Skin Based on 16S rRNA Gene Sequencing. Clin Cosmet Investig Dermatol 2024; 17:1649-1659. [PMID: 39050561 PMCID: PMC11268436 DOI: 10.2147/ccid.s464431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Aim Atopic dermatitis (AD) often accompanies skin infections, and bacterial skin infections often cause persistent and worsening symptoms. In this study, we explored the key changes in the microbiota of AD patients, as well as the effects of different ages and the severity of rash on changes in the microbiota. Patients and Methods A total of 95 AD patients and 77 healthy volunteers were recruited. The AD patients were divided into three groups based age and three groups according to the EASI score. Microorganisms collected from the skin were analyzed through 16S rRNA gene sequencing, revealing species diversity via α and β diversity analyses. Species compositions were compared at the phylum and genus levels. The significance of skin microbiota at the genus level was assessed using the random forest algorithm. Finally, the impact of relationships between different microbial communities on the microbial community composition and the pathogenesis of AD was explored using Pearson correlation coefficients. Results The species diversity of the skin microbiota in the AD group significantly decreased. Compared with that in the healthy volunteers (HV) group, the bacterial diversity in the two groups of samples significantly differed. Staphylococcus dominated the bacterial communities, and as AD symptoms gradually worsened, the abundance of Staphylococcus gradually increased. Among all bacterial genera with a relative abundance greater than 1%, Staphylococcus showed a negative correlation with other genera, and showed significant consistency in specimens from different age groups. Conclusion Changes in the abundance of Staphylococcus in the skin bacterial colonies are the main cause of AD. Brevundimonas, Paracoccus, Corynebacterium, and Veillonella may serve as characteristic biomarkers for AD. These results indicate that altering the microbiota composition of the skin may aid in the treatment of AD.
Collapse
Affiliation(s)
- Xian-Ping Yang
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
| | - Ying-Yao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Cai-Yun Zhang
- Department of Dermatology, Dongguan Traditional Chinese Medicine Hospital, Dongguan, Guangdong, People’s Republic of China
| | - Kai-Kai Huang
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
| | - Shan-Shan Han
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
| | - Bao-Ying Liang
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
| | - Ying Lin
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Yu T, Xu X, Liu Y, Wang X, Wu S, Qiu Z, Liu X, Pan X, Gu C, Wang S, Dong L, Li W, Yao X. Multi-omics signatures reveal genomic and functional heterogeneity of Cutibacterium acnes in normal and diseased skin. Cell Host Microbe 2024; 32:1129-1146.e8. [PMID: 38936370 DOI: 10.1016/j.chom.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqiang Xu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Liu
- 01life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoyu Pan
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chaoying Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
5
|
Ito K, Ogawa T, Tanigaki T, Kameda K, Hashimoto H, Kawana A, Kimizuka Y. Eosinophilic pleural effusion due to Staphylococcus epidermidis infection: A case report. Respir Med Case Rep 2024; 51:102075. [PMID: 39006194 PMCID: PMC11245978 DOI: 10.1016/j.rmcr.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Eosinophilic pleural effusion is rare, and the cause is often obscure. A 73-year-old man with no relevant medical history presented with exertional dyspnea. Chest imaging revealed left-sided pleural effusion, and pleural fluid examination revealed eosinophilic pleural effusion. Blood tests revealed an increased peripheral blood eosinophil count and elevated Immunoglobulin E levels. Staphylococcus epidermidis was detected in pleural specimens collected via thoracoscopy. Antimicrobial therapy targeting Staphylococcus epidermidis resolved the eosinophilic pleural effusion and elevated peripheral blood eosinophil count. Staphylococcus epidermidis infection may be considered as a cause of eosinophilic pleural effusion when the diagnosis is difficult.
Collapse
Affiliation(s)
- Koki Ito
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takunori Ogawa
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Tomomi Tanigaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Koji Kameda
- Division of Thoracic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hiroshi Hashimoto
- Division of Thoracic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
6
|
Wrześniewska M, Wołoszczak J, Świrkosz G, Szyller H, Gomułka K. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review. Int J Mol Sci 2024; 25:6539. [PMID: 38928245 PMCID: PMC11203945 DOI: 10.3390/ijms25126539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence worldwide. AD pathogenesis is complex and consists of immune system dysregulation and impaired skin barrier, influenced by genetic and environmental factors. The purpose of the review is to show the complex interplay between atopic dermatitis and the microbiota. Human microbiota plays an important role in AD pathogenesis and the course of the disease. Dysbiosis is an important factor contributing to the development of atopic diseases, including atopic dermatitis. The gut microbiota can influence the composition of the skin microbiota, strengthening the skin barrier and regulating the immune response via the involvement of bacterial metabolites, particularly short-chain fatty acids, in signaling pathways of the gut-skin axis. AD can be modulated by antibiotic intake, dietary adjustments, hygiene, and living conditions. One of the promising strategies for modulating the course of AD is probiotics. This review offers a summary of how the microbiota influences the development and treatment of AD, highlighting aspects that warrant additional investigation.
Collapse
Affiliation(s)
- Martyna Wrześniewska
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Julia Wołoszczak
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Gabriela Świrkosz
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Hubert Szyller
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
7
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
8
|
Saheb Kashaf S, Kong HH. Adding Fuel to the Fire? The Skin Microbiome in Atopic Dermatitis. J Invest Dermatol 2024; 144:969-977. [PMID: 38530677 PMCID: PMC11034722 DOI: 10.1016/j.jid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Colombo D, Rigoni C, Cantù A, Carnevali A, Filippetti R, Franco T, Grassi A, Loi C, Mazzotta A, Patroi I, Raone B, Tomassini MA, Amoruso A, Pane M, Damiani G. Probiotics and Prebiotics Orally Assumed as Disease Modifiers for Stable Mild Atopic Dermatitis: An Italian Real-Life, Multicenter, Retrospective, Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2080. [PMID: 38138183 PMCID: PMC10744411 DOI: 10.3390/medicina59122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The role of the skin-gut axis in atopic dermatitis (AD) remains a subject of debate, limiting non-pharmacological interventions such as probiotics and prebiotics. To improve understanding of their potential as a monotherapy for stable mild cases, we conducted a real-life, multicenter, retrospective observational study in Italy. We administered three selected bacteria (Bifidobacterium animalis subsp. lactis BS01, Lactiplantibacillus plantarum LP14, and Lacticaseibacillus rhamnosus LR05) orally to patients with mild atopic dermatitis without a placebo control group, following up for 12 weeks. Clinical assessments using the Scoring Atopic Dermatitis (SCORAD), Eczema Area and Severity Index (EASI), and Three-Item Severity (TIS) score were conducted on 144 enrolled patients (average age: 25.1 ± 17.6 years). Notably, both pruritus and AD-related lesions (erythema, edema/papules, excoriation) exhibited significant clinical and statistical improvement (p < 0.001) after 12 weeks of exclusive probiotic and prebiotic use. These preliminary results suggest a potential link between the skin-gut microbiome and support the rationale for using specific probiotics and prebiotics in mild AD, even for maintenance, to reduce flares and dysbiosis.
Collapse
Affiliation(s)
- Delia Colombo
- Independent Researcher, Private Practice, Via Livigno 6, 20158 Milan, Italy;
| | - Corinna Rigoni
- Independent Researcher, Private Practice, Corso Monteforte 40, 20122 Milan, Italy;
| | - Alessandra Cantù
- Independent Researcher, Private Practice, Via Domodossola 9/A, 20145 Milan, Italy;
| | - Antonello Carnevali
- Independent Researcher, Private Practice, Str. Colomba Pecorari 32/a, 06134 Perugia, Italy;
| | | | - Tiziana Franco
- Independent Researcher, Private Practice, Viao Veio, 04100 Latina, Italy;
| | - Alessandra Grassi
- Independent Researcher, Private Practice, Via Coletti 19, 00191 Rome, Italy;
| | - Camilla Loi
- Independent Researcher, Private Practice, Via X Settembre 1943 7 and 9, 40011 Anzola dell’Emilia, Italy;
| | - Annamaria Mazzotta
- Independent Researcher, Private Practice, Viale di Villa Massimo 48, 00161 Rome, Italy;
| | - Ivona Patroi
- Independent Researcher, Private Practice, Via del Tritone 102, 00187 Rome, Italy;
| | - Beatrice Raone
- Independent Researcher, Private Practice, Via Ruggero Leoncavallo 5, 40137 Bologna, Italy;
| | | | - Angela Amoruso
- Independent Researcher, Probiotical Research srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Independent Researcher, Probiotical Research srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences University of Milan, 20122 Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, PhD Degree Program in Pharmacological Sciences, University of Padua, 35122 Padua, Italy
| |
Collapse
|