1
|
Mondal S, Zahumensky J, Vesela P, Malinsky J. Conserved mechanism of Xrn1 regulation by glycolytic flux and protein aggregation. Heliyon 2024; 10:e38786. [PMID: 39416838 PMCID: PMC11481674 DOI: 10.1016/j.heliyon.2024.e38786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The regulation of gene expression in eukaryotes relies largely on the action of exoribonucleases, evolutionarily conserved enzymes that digest decapped messenger RNAs in the 5'-3' direction. The activity of Xrn1, the major yeast exoribonuclease, is regulated by targeted changes in its cellular localisation in direct response to the cell's metabolic state. When fermentable carbon sources are available, active Xrn1 is diffusely localised in the cytosol. Upon depletion of these sources, Xrn1 is sequestered at the plasma membrane-associated protein complex, the eisosome, and becomes inactive. Although this phenomenon has been described previously, the molecular mechanisms underlying these changes remain unknown. We report that the binding of Xrn1 to the plasma membrane is subject to glycolytic flux, rather than the availability of a fermentable carbon source, is independent of TORC1 activity and requires the core eisosomal proteins Pil1 and Lsp1. We identify the SH3-like domain of the Xrn1 protein as a putative interaction domain. In addition, we show that when expressed in Saccharomyces cerevisiae, the human orthologue of Xrn1 mirrors its yeast counterpart, i.e., it segregates to the eisosome under conditions of halted glycolysis. Our results not only advance our understanding of Xrn1 regulation but also indicate that this regulatory principle is conserved from yeast to humans.
Collapse
Affiliation(s)
- Satyendra Mondal
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague, Czech Republic
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague, Czech Republic
| | - Petra Vesela
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague, Czech Republic
| | - Jan Malinsky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague, Czech Republic
| |
Collapse
|
2
|
Naaz A, Zhang Y, Faidzinn NA, Yogasundaram S, Dorajoo R, Alfatah M. Curcumin Inhibits TORC1 and Prolongs the Lifespan of Cells with Mitochondrial Dysfunction. Cells 2024; 13:1470. [PMID: 39273040 PMCID: PMC11394456 DOI: 10.3390/cells13171470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is an inevitable biological process that contributes to the onset of age-related diseases, often as a result of mitochondrial dysfunction. Understanding the mechanisms behind aging is crucial for developing therapeutic interventions. This study investigates the effects of curcumin on postmitotic cellular lifespan (PoMiCL) during chronological aging in yeast, a widely used model for human postmitotic cellular aging. Our findings reveal that curcumin significantly prolongs the PoMiCL of wildtype yeast cells, with the most pronounced effects observed at lower concentrations, indicating a hormetic response. Importantly, curcumin also extends the lifespan of postmitotic cells with mitochondrial deficiencies, although the hormetic effect is absent in these defective cells. Mechanistically, curcumin inhibits TORC1 activity, enhances ATP levels, and induces oxidative stress. These results suggest that curcumin has the potential to modulate aging and offer therapeutic insights into age-related diseases, highlighting the importance of context in its effects.
Collapse
Affiliation(s)
- Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore 117456, Singapore
| |
Collapse
|
3
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Alfatah M, Lim JJJ, Zhang Y, Naaz A, Cheng TYN, Yogasundaram S, Faidzinn NA, Lin JJ, Eisenhaber B, Eisenhaber F. Uncharacterized yeast gene YBR238C, an effector of TORC1 signaling in a mitochondrial feedback loop, accelerates cellular aging via HAP4- and RMD9-dependent mechanisms. eLife 2024; 12:RP92178. [PMID: 38713053 PMCID: PMC11076046 DOI: 10.7554/elife.92178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jolyn Jia Jia Lim
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
5
|
Alfatah M, Zhang Y, Naaz A, Cheng TYN, Eisenhaber F. PICLS with human cells is the first high throughput screening method for identifying novel compounds that extend lifespan. Biol Direct 2024; 19:8. [PMID: 38254217 PMCID: PMC10804585 DOI: 10.1186/s13062-024-00455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Gerontology research on anti-aging interventions with drugs could be an answer to age-related diseases, aiming at closing the gap between lifespan and healthspan. Here, we present two methods for assaying chronological lifespan in human cells: (1) a version of the classical outgrowth assay with quantitative assessment of surviving cells and (2) a version of the PICLS method (propidium iodide fluorescent-based measurement of cell death). Both methods are fast, simple to conduct, cost-effective, produce quantitative data for further analysis and can be used with diverse human cell lines. Whereas the first method is ideal for validation and testing the post-intervention reproductive potential of surviving cells, the second method has true high-throughput screening potential. The new technologies were validated with known anti-aging compounds (2,5-anhydro-D-mannitol and rapamycin). Using the high-throughput screening method, we screened a library of 162 chemical entities and identified three compounds that extend the longevity of human cells.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore.
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138672, Republic of Singapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
- LASA - Lausitz Advanced Scientific Applications gGmbH, Straße der Einheit 2-24, 02943, Weißwasser, Federal Republic of Germany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, 637551, Republic of Singapore
| |
Collapse
|