1
|
Koch D, Nandan A, Ramesan G, Koseska A. Biological computations: Limitations of attractor-based formalisms and the need for transients. Biochem Biophys Res Commun 2024; 720:150069. [PMID: 38754165 DOI: 10.1016/j.bbrc.2024.150069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Living systems, from single cells to higher vertebrates, receive a continuous stream of non-stationary inputs that they sense, for e.g. via cell surface receptors or sensory organs. By integrating these time-varying, multi-sensory, and often noisy information with memory using complex molecular or neuronal networks, they generate a variety of responses beyond simple stimulus-response association, including avoidance behavior, life-long-learning or social interactions. In a broad sense, these processes can be understood as a type of biological computation. Taking as a basis generic features of biological computations, such as real-time responsiveness or robustness and flexibility of the computation, we highlight the limitations of the current attractor-based framework for understanding computations in biological systems. We argue that frameworks based on transient dynamics away from attractors are better suited for the description of computations performed by neuronal and signaling networks. In particular, we discuss how quasi-stable transient dynamics from ghost states that emerge at criticality have a promising potential for developing an integrated framework of computations, that can help us understand how living system actively process information and learn from their continuously changing environment.
Collapse
Affiliation(s)
- Daniel Koch
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Akhilesh Nandan
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Gayathri Ramesan
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany.
| |
Collapse
|
2
|
Koch D, Nandan A, Ramesan G, Tyukin I, Gorban A, Koseska A. Ghost Channels and Ghost Cycles Guiding Long Transients in Dynamical Systems. PHYSICAL REVIEW LETTERS 2024; 133:047202. [PMID: 39121409 DOI: 10.1103/physrevlett.133.047202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 08/11/2024]
Abstract
Dynamical descriptions and modeling of natural systems have generally focused on fixed points, with saddles and saddle-based phase-space objects such as heteroclinic channels or cycles being central concepts behind the emergence of quasistable long transients. Reliable and robust transient dynamics observed for real, inherently noisy systems is, however, not met by saddle-based dynamics, as demonstrated here. Generalizing the notion of ghost states, we provide a complementary framework that does not rely on the precise knowledge or existence of (un)stable fixed points, but rather on slow directed flows organized by ghost sets in ghost channels and ghost cycles. Moreover, we show that the appearance of these novel objects is an emergent property of a broad class of models typically used for description of natural systems.
Collapse
|
3
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. eLife 2024; 12:RP92093. [PMID: 38717010 PMCID: PMC11078544 DOI: 10.7554/elife.92093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
4
|
Simons BD, Karin O. Tuning of plasma cell lifespan by competition explains the longevity and heterogeneity of antibody persistence. Immunity 2024; 57:600-611.e6. [PMID: 38447570 DOI: 10.1016/j.immuni.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Plasma cells that emerge after infection or vaccination exhibit heterogeneous lifespans; most survive for days to months, whereas others persist for decades, providing antigen-specific long-term protection. We developed a mathematical framework to explore the dynamics of plasma cell removal and its regulation by survival factors. Analyses of antibody persistence following hepatitis A and B and HPV vaccination revealed specific patterns of longevity and heterogeneity within and between responses, implying that this process is fine-tuned near a critical "flat" state between two dynamic regimes. This critical state reflects the tuning of rates of the underlying regulatory network and is highly sensitive to variation in parameters, which amplifies lifespan differences between cells. We propose that fine-tuning is the generic outcome of competition over shared survival signals, with a competition-based mechanism providing a unifying explanation for a wide range of experimental observations, including the dynamics of plasma cell accumulation and the effects of survival factor deletion. Our theory is testable, and we provide specific predictions.
Collapse
Affiliation(s)
- Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Meca E, Díez CM, Gaut BS. Modeling transposable elements dynamics during polyploidization in plants. J Theor Biol 2024; 579:111701. [PMID: 38128754 DOI: 10.1016/j.jtbi.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
In this work we study the proliferation of transposable elements (TEs) and the epigenetic response of plants during the process of polyploidization. Through a deterministic model, expanding on our previous work on TE proliferation under epigenetic regulation, we study the long-term TE distribution and TE stability in the subgenomes of both autopolyploids and allopolyploids. We also explore different small-interfering RNA (siRNA) action modes on the subgenomes, including a model where siRNAs are not directed to specific genomes and one where siRNAs are directed - i.e. more active - in subgenomes with higher TE loads. In the autopolyploid case, we find long-term stable equilbria that tend to equilibrate the number of active TEs between subgenomes. In the allopolyploid case, directed siRNA action is fundamental to avoid a "winner takes all" outcome of the competition between the TEs in the different subgenomes. We also show that decaying oscillations in the number of TEs occur naturally in all cases, perhaps explaining some of the observed features of 'genomic shock' after hybridization events, and that the balance in the dynamics of the different types of siRNA is determinant for the synchronization of these oscillations.
Collapse
Affiliation(s)
- Esteban Meca
- Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Albert Einstein (C2), 14014 Córdoba, Spain.
| | - Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Celestino Mutis (C4), 14014 Córdoba, Spain.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-3875, United States of America.
| |
Collapse
|
6
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544138. [PMID: 37333369 PMCID: PMC10274868 DOI: 10.1101/2023.06.07.544138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Such stable changes can (1) alter steady-state levels while preserving the architecture, (2) induce different architectures that persist for many generations, or (3) collapse the entire architecture. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that the evolution of mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of regulatory architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode C. elegans, which range from permanent silencing to recovery from silencing within a few generations and subsequent resistance to silencing. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
7
|
Deshe N, Eliezer Y, Hoch L, Itskovits E, Bokman E, Ben-Ezra S, Zaslaver A. Inheritance of associative memories and acquired cellular changes in C. elegans. Nat Commun 2023; 14:4232. [PMID: 37454110 PMCID: PMC10349803 DOI: 10.1038/s41467-023-39804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Experiences have been shown to modulate behavior and physiology of future generations in some contexts, but there is limited evidence for inheritance of associative memory in different species. Here, we trained C. elegans nematodes to associate an attractive odorant with stressful starvation conditions and revealed that this associative memory was transmitted to the F1 progeny who showed odor-evoked avoidance behavior. Moreover, the F1 and the F2 descendants of trained animals exhibited odor-evoked cellular stress responses, manifested by the translocation of DAF-16/FOXO to cells' nuclei. Sperm, but not oocytes, transmitted these odor-evoked cellular stress responses which involved H3K9 and H3K36 methylations, the small RNA pathway machinery, and intact neuropeptide secretion. Activation of a single chemosensory neuron sufficed to induce a serotonin-mediated systemic stress response in both the parental trained generation and in its progeny. Moreover, inheritance of the cellular stress responses increased survival chances of the progeny as exposure to the training odorant allowed the animals to prepare in advance for an impending adversity. These findings suggest that in C. elegans associative memories and cellular changes may be transferred across generations.
Collapse
Affiliation(s)
- Noa Deshe
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yifat Eliezer
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Lihi Hoch
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Eduard Bokman
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shachaf Ben-Ezra
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|