1
|
Zhang H, Huang Y, Bei Z, Ju Z, Meng J, Hao M, Zhang J, Zhang H, Xi W. Inter-Residue Distance Prediction From Duet Deep Learning Models. Front Genet 2022; 13:887491. [PMID: 35651930 PMCID: PMC9148999 DOI: 10.3389/fgene.2022.887491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Residue distance prediction from the sequence is critical for many biological applications such as protein structure reconstruction, protein–protein interaction prediction, and protein design. However, prediction of fine-grained distances between residues with long sequence separations still remains challenging. In this study, we propose DuetDis, a method based on duet feature sets and deep residual network with squeeze-and-excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the ability to learn and fuse features directly or indirectly extracted from the whole-genome/metagenomic databases and, therefore, minimize the information loss through ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely used peer methods on a large-scale test set (610 proteins chains). The experimental results suggest that 1) prediction results from different feature sets show obvious differences; 2) ensembling different feature sets can improve the prediction performance; 3) high-quality multiple sequence alignment (MSA) used for both training and testing can greatly improve the prediction performance; and 4) DuetDis is more accurate than peer methods for the overall prediction, more reliable in terms of model prediction score, and more robust against shallow multiple sequence alignment (MSA).
Collapse
Affiliation(s)
- Huiling Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhendong Bei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jingjing Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiping Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Xi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenhui Xi,
| |
Collapse
|
2
|
Reza MS, Zhang H, Hossain MT, Jin L, Feng S, Wei Y. COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization. MEMBRANES 2021; 11:membranes11070503. [PMID: 34209399 PMCID: PMC8305966 DOI: 10.3390/membranes11070503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
Protein contact prediction helps reconstruct the tertiary structure that greatly determines a protein’s function; therefore, contact prediction from the sequence is an important problem. Recently there has been exciting progress on this problem, but many of the existing methods are still low quality of prediction accuracy. In this paper, we present a new mixed integer linear programming (MILP)-based consensus method: a Consensus scheme based On a Mixed integer linear opTimization method for prOtein contact Prediction (COMTOP). The MILP-based consensus method combines the strengths of seven selected protein contact prediction methods, including CCMpred, EVfold, DeepCov, NNcon, PconsC4, plmDCA, and PSICOV, by optimizing the number of correctly predicted contacts and achieving a better prediction accuracy. The proposed hybrid protein residue–residue contact prediction scheme was tested in four independent test sets. For 239 highly non-redundant proteins, the method showed a prediction accuracy of 59.68%, 70.79%, 78.86%, 89.04%, 94.51%, and 97.35% for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 contacts, respectively. When tested on the CASP13 and CASP14 test sets, the proposed method obtained accuracies of 75.91% and 77.49% for top-L/5 predictions, respectively. COMTOP was further tested on 57 non-redundant α-helical transmembrane proteins and achieved prediction accuracies of 64.34% and 73.91% for top-L/2 and top-L/5 predictions, respectively. For all test datasets, the improvement of COMTOP in accuracy over the seven individual methods increased with the increasing number of predicted contacts. For example, COMTOP performed much better for large number of contact predictions (such as top-5L and top-3L) than for small number of contact predictions such as top-L/2 and top-L/5. The results and analysis demonstrate that COMTOP can significantly improve the performance of the individual methods; therefore, COMTOP is more robust against different types of test sets. COMTOP also showed better/comparable predictions when compared with the state-of-the-art predictors.
Collapse
Affiliation(s)
- Md. Selim Reza
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; (M.S.R.); (H.Z.); (M.T.H.)
- Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Huiling Zhang
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; (M.S.R.); (H.Z.); (M.T.H.)
- Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Md. Tofazzal Hossain
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; (M.S.R.); (H.Z.); (M.T.H.)
- Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Langxi Jin
- Department of Computer Science and Technology, School of Computer Science and Technology, Harbin University of Science and Technology, 52 Xuefu Road, Nangang District, Harbin 150080, China;
| | - Shengzhong Feng
- Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yanjie Wei
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; (M.S.R.); (H.Z.); (M.T.H.)
- Centre for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence:
| |
Collapse
|
3
|
Zhang H, Huang Q, Bei Z, Wei Y, Floudas CA. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming. Proteins 2016; 84:332-48. [PMID: 26756402 DOI: 10.1002/prot.24979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
Abstract
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.
Collapse
Affiliation(s)
- Huiling Zhang
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsheng Huang
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhendong Bei
- Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanjie Wei
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Christodoulos A Floudas
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843.,Texas A&M Energy Institute, Texas A&M University, College Station, Texas, 77843
| |
Collapse
|
4
|
Márquez-Chamorro AE, Asencio-Cortés G, Santiesteban-Toca CE, Aguilar-Ruiz JS. Soft computing methods for the prediction of protein tertiary structures: A survey. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|