1
|
Lei D, Wang L, Lv Y, Luo N, Wang Z. A Comprehensive Review of Solar Photocatalysis & Photothermal Catalysis for Hydrogen Production from Biomass: from Material Characteristics to Engineering Application. Chemistry 2024; 30:e202401486. [PMID: 38865111 DOI: 10.1002/chem.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Biomass photoreforming is a promising way of producing sustainable hydrogen thanks to the abundant sources of biomass feedstocks. Solar energy provides the heat and driven force to initial biomass oxidation coupled with H2 evolution. Currently, biomass photoreforming is still far from plant-scale applications due to the lower solar energy utilization efficiencies, the low H2 yield, and the lack of appropriate photoreactors. The production of H2 from photoreforming of native biomass and platform molecules was summarized and discussed with particular attention to the prospects of scaling up the catalysis technology for mass hydrogen production. The types of photoreforming, including photocatalysis and photothermal catalysis, were discussed, consequently considering the different requirements for photoreactors. We also reviewed the photoreactors that support biomass photoreforming. Numerical simulation methods were implemented for the solid-liquid two-phase flow and inter-particle radiative transfer involved in the reaction process. Developing concentrated photothermal catalytic flowed reactors is beneficial to scale-up catalytic hydrogen production from biomass.
Collapse
Affiliation(s)
- Dongqiang Lei
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| | - Linhao Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| | - Yue Lv
- School of Energy & Power Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Nengchao Luo
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhifeng Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang X, Jin S, Liu S, Chen Y, Fang C, Wang K, Wang X, Wu X, Wang J. Low-Temperature NH 3-SCR over Hierarchical MnO x Supported on Montmorillonite Prepared by Different Methods. ACS OMEGA 2023; 8:13384-13395. [PMID: 37065025 PMCID: PMC10099437 DOI: 10.1021/acsomega.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Hierarchical MnO x pillared or supported on montmorillonite were prepared by three methods, i.e., impregnation (IM), chemical precipitation (CP), and in situ deposition (SP). The catalysts were characterized by low-temperature N2 adsorption (BET), XRD, XPS, SEM, TEM, H2-TPR, NH3-TPD, NO-TPD, TPSR, in situ DRIFTS, and evaluation of catalytic performance for NH3-SCR. The best catalytic performance was obtained for catalysts prepared by SP in terms of activity and selectivity, obtaining >90% NO conversion with >95% selectivity to N2 in 100-300 °C and GHSV of 70,000 h-1. Compared to IM and CP, SP greatly simplified catalyst preparation, resulting in higher BET surface areas; a spongy pore structure; more highly dispersed, pillared MnO x species; and higher density of acid sites distributed on catalysts surface, which all contributed to its superior performance for NH3-SCR. The activity for low-temperature NH3-SCR of manganese catalysts could be widely tailored by preparation methods.
Collapse
Affiliation(s)
- Xianlong Zhang
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shi Jin
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Shiwen Liu
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Yazhong Chen
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Cheng Fang
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Kui Wang
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Xinyu Wang
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Xueping Wu
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering
Research Center of Advanced Composite Materials Design & Application
of Anhui Province, Hefei 230009, China
| | - Junwei Wang
- College
of Chemistry and Chemical Engineering, Anqing
Normal University, Anqing 246011, China
| |
Collapse
|
3
|
Phosphotungstic Acid-Modified MnOx for Selective Catalytic Reduction of NOx with NH3. Catalysts 2022. [DOI: 10.3390/catal12101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H3PW12O40-modified MnOx catalysts (denoted as Mn-HPW) were used for NOx elimination with co-fed NH3. The optimal Mn-HPW0.02 catalyst exhibited over 90% NOx conversion at 90–270 °C. The incorporation of HPW increased the amount of Lewis acid sites of the catalyst for adsorbing NH3, and accelerated the reaction between the adsorbed NH3 species and gas-phase NOx, thus, increasing the low-temperature catalytic activity. The oxidation ability of the Mn catalyst was decreased due to the addition of HPW, thus, mitigating the overoxidation of the adsorbed NH3 species and improving the de-NOx activity and N2 selectivity in the high-temperature region. DRIFT results revealed that the NH3 species on Lewis and Brønsted acid sites, bridged nitrate, and bidentate nitrate were important species/intermediates for the reaction. NH3-SCR over the Mn and Mn-HPW0.02 catalysts obeyed the Eley–Rideal and Langmuir–Hinshelwood mechanisms, simultaneously, at 120 °C.
Collapse
|
4
|
Wang F, Wang P, Lan T, Shen Y, Ren W, Zhang D. Ultralow-Temperature NO x Reduction over SmMn 2O 5 Mullite Catalysts Via Modulating the Superficial Dual-Functional Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Zhang H, Li Z, Liu T, Zhang M, Deng S, Li Y, Liang P. Satisfactory Anti-Interference and High Performance of the 1Co-1Ce/Mn@ZSM-5 Catalyst for Simultaneous Removal of NO and Hg 0 in Abominable Flue Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3596-3603. [PMID: 35195995 DOI: 10.1021/acs.est.2c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The removal performance of NO and Hg0, the operating temperature window, and the resistance of SO2 and H2O on Mn@ZSM-5 catalyst, which was synthesized by a one-step hydrothermal method with manganese oxide as the active component, were improved by doping different molar ratios of Co/Ce. Co and Ce doping increased the content of Mn4+ as well as of chemisorbed oxygen and promoted the NO and Hg0 removal performance, which reached 96.7 and 98.9%, respectively, in flue gas over the 1Co-1Ce/Mn@ZSM-5 catalyst. Furthermore, with SO2 and H2O addition, it decreased slightly to 88.4 and 89.3%, respectively, and then remained stable. The coexistence of SO2 and H2O had a synergistic poisoning effect on the activity of the catalyst, while the doping of Co and Ce had a positive influence on the tolerance to SO2 and H2O. The excellent anti-interference and high performance of the 1Co-1Ce/Mn@ZSM-5 catalyst in the abominable flue gas were mainly due to the outer surface modification of organosilane and because the sacrificial element Co protected the active sites of Ce and Mn from poisoning, which prevented the redox ability of the catalyst from getting affected.
Collapse
Affiliation(s)
- Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P.R. China
| | - Zishun Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P.R. China
| | - Ting Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P.R. China
| | - Mingzhu Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| | - Shengnan Deng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P.R. China
| | - Yincui Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P.R. China
| | - Peng Liang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| |
Collapse
|
6
|
Wang L, Wang B, Guo Y, Zheng Y, Zhu T. Interactions between CO oxidation and selective catalytic reduction of NO with NH 3 over Mn-based catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00776b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The α-MnO2-Cu catalyst has a high NO and CO removal rate. CO reduced the NH3-SCR activity by inhibiting NO adsorption. NH3 negatively affected CO oxidation by minimizing the formate intermediate. NO decomposed intermediates to promote CO oxidation.
Collapse
Affiliation(s)
- Liyan Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
| | - Bin Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
- Beijing Engineering Research Centre of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangyang Guo
- Beijing Engineering Research Centre of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Zheng
- Beijing Engineering Research Centre of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Beijing Engineering Research Centre of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
7
|
Recent Advances in MnOx/CeO2-Based Ternary Composites for Selective Catalytic Reduction of NOx by NH3: A Review. Catalysts 2021. [DOI: 10.3390/catal11121519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recently, manganese oxides (MnOx)/cerium(IV) oxide (CeO2) composites have attracted widespread attention for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonia (NH3), which exhibit outstanding catalytic performance owing to unique features, such as a large oxygen storage capacity, excellent low-temperature activity, and strong mechanical strength. The intimate contact between the components can effectively accelerate the charge transfer to enhance the electron–hole separation efficiency. Nevertheless, MnOx/CeO2 still reveals some deficiencies in the practical application process because of poor thermal stability, and a low reduction efficiency. Constructing MnOx/CeO2 with other semiconductors is the most effective strategy to further improve catalytic performance. In this article, we discuss progress in the field of MnOx/CeO2-based ternary composites with an emphasis on the SCR of NOx by NH3. Recent progress in their fabrication and application, including suitable examples from the relevant literature, are analyzed and summarized. In addition, the interaction mechanisms between MnOx/CeO2 catalysts and NOx pollutants are comprehensively dissected. Finally, the review provides basic insights into prospects and challenges for the advancement of MnOx/CeO2-based ternary catalysts.
Collapse
|
8
|
Patel VK, Sharma S. Effect of oxide supports on palladium based catalysts for NO reduction by H2-SCR. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Li G, Mao D, Chao M, Li G, Yu J, Guo X. Low-temperature NH3-SCR of NO over MnCeO /TiO2 catalyst: Enhanced activity and SO2 tolerance by modifying TiO2 with Al2O3. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Zhang X, Zhang X, Yang X, Chen Y, Hu X, Wu X. CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
New MoO3-CeO2-ZrO2 and WO3-CeO2-ZrO2 nanostructured mesoporous aerogel catalysts for the NH3-SCR of NO from diesel engine exhaust. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts 2020. [DOI: 10.3390/catal10101154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sb-containing catalysts (SbZrOx (SbZr), SbCeOx (SbCe), SbCeZrOx (SbCeZr)) were prepared by citric acid method and investigated for the selective catalytic reduction (SCR) of NOx with NH3 (NH3-SCR). SbCeZr outperformed SbZr and SbCe and exhibited the highest activity with 80% NO conversion in the temperature window of 202–422 °C. Meanwhile, it also had good thermal stability and resistance against H2O and SO2. Various characterization methods, such as XRD, XPS, H2-TPR, NH3-TPD, and in situ diffuse reflectance infrared Fourier transform (DRIFT), were applied to understand their different behavior in NOx removal. The presence of Sb in the metal oxides led to the difference in acid distribution and redox property, which closely related with the NH3 adsorption and NO oxidation. Brønsted acid and Lewis acid were evenly distributed on SbCe, while Brønsted acid dominated on SbCeZr. Compared with Brønsted acid, Lewis acid was slightly active in NH3-SCR. The competition between NH3 adsorption and NO oxidation was dependent on SbOx and metal oxides, which were found on SbCe while not on SbCeZr.
Collapse
|
13
|
Duan CP, Guo RT, Wu GL, Pan WG. Selective catalytic reduction of NO x by NH 3 over CeVO 4-CeO 2 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22818-22828. [PMID: 32323228 DOI: 10.1007/s11356-020-08875-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, it was found that the CeVO4-CeO2 nanocomposite possessed remarkably selective catalytic reduction (SCR) performance and wider active temperature scope. And, the promotion principle was explored based on BET, XRD, XPS, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, and in situ diffuse reflectance infrared Fourier transform (DRIFT) techniques. The characterization outcomes manifested that the CeVO4-CeO2 nanocomposite could inhibit its crystallinity and enhance the concentrations of chemisorbed oxygen species and Ce3+, which was advantageous to the SCR process. Moreover, the in situ DRIFT technique manifested that the NH3-SCR reaction over Ce0.75V0.25Oy was enhanced effectively through the mechanism of L-H.
Collapse
Affiliation(s)
- Chao-Peng Duan
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, People's Republic of China
| | - Rui-Tang Guo
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, People's Republic of China.
| | - Gui-Lin Wu
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, People's Republic of China
| | - Wei-Guo Pan
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
14
|
Zhang P, Guo RT, Wu LJ, Pan WG. The enhancement of NH 3-SCR performance for CeO 2 catalyst by CO pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13617-13636. [PMID: 32030589 DOI: 10.1007/s11356-020-07908-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
CO pretreatment was found to effectively improve the SCR performance of CeO2, with over 90% at about 300 °C. The larger specific area and the decrease of CeO2 crystallization indicated the modification of the surface structure after CO pretreatment. Abundant Ce3+ species and active oxygen, better reducibility, and the higher surface adsorption capacity were mainly responsible for its enhanced SCR performance. DRIFT analysis revealed the presumed coexistence of two reaction routes that the L-H mechanism was related to the reaction temperature, while the reaction rate of E-R route was almost directly proportional to the NO concentration at a certain temperature, based on the kinetic calculation. In addition, the CO-pretreated CeO2 also exhibited a better poisoning tolerance for SO2 and H2O and excellent thermal stability and circularity. Graphical abstract The process of NH3-SCR reaction over CeO2-CO catalyst.
Collapse
Affiliation(s)
- Ping Zhang
- School of Mechanical Engineering, Tongji University, Shanghai, China
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Rui-Tang Guo
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Li-Jun Wu
- School of Mechanical Engineering, Tongji University, Shanghai, China
| | - Wei-Guo Pan
- School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| |
Collapse
|
15
|
Niu C, Wang Y, Ren D, Xiao L, Duan R, Wang B, Wang X, Xu Y, Li Z, Shi JW. The deposition of VWOx on the CuCeOy microflower for the selective catalytic reduction of NOx with NH3 at low temperatures. J Colloid Interface Sci 2020; 561:808-817. [DOI: 10.1016/j.jcis.2019.11.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
|
16
|
A Novel Porous Ceramic Membrane Supported Monolithic Cu-Doped Mn–Ce Catalysts for Benzene Combustion. Catalysts 2019. [DOI: 10.3390/catal9080652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Porous ceramic membranes (PCMs) are considered as an efficient hot gas filtration material in industrial systems. Functionalization of the PCMs with high-efficiency catalysts for the abatement of volatile organic compounds (VOCs) during dust elimination is a promising way to purify the industrial exhaust gases. In this work, we prepared PCMs (porosity: 70%) in a facile sintering process and integrated Cu-doped Mn–Ce oxides into the PCMs as monolithic catalysts by the sol–gel method for benzene oxidation. Through this method, the catalysts are dispersed evenly throughout the PCMs with excellent adhesion, and the catalytic PCMs provided more active sites for the reactant gases during the catalytic reaction process compared to the powder catalysts. The physicochemical properties of PCMs and catalytic PCMs were characterized systematically, and the catalytic activities were measured in total oxidation of benzene. As a result, all the prepared catalytic PCMs exhibited high catalytic activity for benzene oxidation. Significantly, the monolithic catalyst of Cu0.2Mn0.6Ce0.2/PCMs obtained the lowest temperature for benzene conversion efficiency of 90% (T90) at 212 °C with a high gaseous hourly space velocity of 5000 h−1 and showed strong resistance to high humidity (90 vol.%, 20 °C) with long-term stability in continuous benzene stream, which is caused by abundant active adsorbed oxygen, more surficial oxygen vacancy, and lower-temperature reducibility.
Collapse
|
17
|
Zhong L, Fang Q, Li X, Li Q, Zhang C, Chen G. SO2 Resistance of Mn–Ce Catalysts for Lean Methane Combustion: Effect of the Preparation Method. Catal Letters 2019. [DOI: 10.1007/s10562-019-02896-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Ran X, Li M, Wang K, Qian X, Fan J, Sun Y, Luo W, Teng W, Zhang WX, Yang J. Spatially Confined Tuning the Interfacial Synergistic Catalysis in Mesochannels toward Selective Catalytic Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19242-19251. [PMID: 31050880 DOI: 10.1021/acsami.9b05437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low-temperature selective catalytic reduction of nitrogen oxides (NO x) with NH3 (NH3-SCR) has been identified as a promising strategy to mitigate the pollution of NO x. The fine control of synergistic effect and the suppression of aggregation of the active component, however, are still the challenge because of the weak interaction between the active component and matrix. In this work, a series of Ce-promoted Mn-based heterogeneous catalysts supported on mesoporous silica (SBA-15) with different Mn contents were prepared by two separated impregnation processes. Low-temperature NH3-SCR activity demonstrates that the Mn content in the catalyst has a great influence on the activity of the NH3-SCR reaction. The 20% MnO x-CeO x/SBA-15 catalyst exhibited the best catalytic performance in a broad temperature window. Moreover, it exhibits enhanced resistance to SO2 and H2O and long-term durability during 72 h reaction. The highly dispersive active phase, the formation of solid solution, the high ratio of Ce3+, and the spatial confinement effect largely contribute to the outstanding activity and durability of the 20% MnO x-CeO x/SBA-15 catalyst. Finally, a monolithic catalyst fabricated by the 20% MnO x-CeO x/SBA-15 catalyst powder and cordierite substrate show promising industrial application.
Collapse
Affiliation(s)
- Xianqiang Ran
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Tongji Clearon Environmental-Protection Equipment Engineering Company, Limited , Shanghai 200092 , P. R. China
| | - Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , P. R. China
| | - Kai Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , P. R. China
| | - Xiaoyong Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , P. R. China
| | - Jianwei Fan
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Yu Sun
- Shanghai Tongji Clearon Environmental-Protection Equipment Engineering Company, Limited , Shanghai 200092 , P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , P. R. China
| | - Wei Teng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Wei-Xian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , P. R. China
| |
Collapse
|
19
|
Shi JW, Wang Y, Duan R, Gao C, Wang B, He C, Niu C. The synergistic effects between Ce and Cu in CuyCe1−yW5Ox catalysts for enhanced NH3-SCR of NOx and SO2 tolerance. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01949e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-manganese-based metal oxides are promising catalysts for the NH3-SCR (selective catalytic reduction) of NOx at low temperatures.
Collapse
Affiliation(s)
- Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Ruibin Duan
- Guangdong Provincial Academy of Building Research Group Co., Ltd
- Guangzhou 510530
- China
| | - Chen Gao
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Baorui Wang
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Chi He
- Department of Environmental Science and Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Chunming Niu
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
20
|
Liu SW, Guo RT, Sun X, Liu J, Pan WG, Shi X, Wang ZY, Liu XY, Qin H. Selective catalytic reduction of NOx over Ce/TiZrOx catalyst: The promoted K resistance by TiZrOx support. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Yi T, Li J, Zhang Y, Yang X. A Novel Nano-sized Catalyst CeO2-CuO/Hollow ZSM-5 for NOx Reduction with NH3. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7333-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Lu P, Yue H, Xing Y, Wei J, Zeng Z, Li R, Wu W. Low-temperature co-purification of NO x and Hg 0 from simulated flue gas by Ce xZr yMn zO 2/r-Al 2O 3: the performance and its mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20575-20590. [PMID: 29748813 DOI: 10.1007/s11356-018-2199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, series of CexZryMnzO2/r-Al2O3 catalysts were prepared by impregnation method and explored to co-purification of NOx and Hg0 at low temperature. The physical and chemical properties of the catalysts were investigated by XRD, BET, FTIR, NH3-TPD, H2-TPR, and XPS. The experimental results showed that 10% Ce0.2Zr0.3Mn0.5O2/r-Al2O3 yielded higher conversion on co-purification of NOx and Hg0 than the other prepared catalysts at low temperature, especially at 200-300 °C. 91% and 97% convert rate of NOx and Hg0 were obtained, respectively, when 10% Ce0.2Zr0.3Mn0.5O2/r-Al2O3 catalyst was used at 250 °C. Moreover, the presence of H2O slightly decreased the removal of NOx and Hg0 owing to the competitive adsorption of H2O and Hg0. When SO2 was added, the removal of Hg0 first increased slightly and then presented a decrease due to the generation of SO3 and (NH4)2SO4. The results of NH3-TPD indicated that the strong acid of 10% Ce0.2Zr0.3Mn0.5O2/r-Al2O3 improved its high-temperature activity. XPS and H2-TPR results showed there were high-valence Mn and Ce species in 10% Ce0.2Zr0.3Mn0.5O2/r-Al2O3, which could effectively promote the removal of NOx and Hg0. Therefore, the mechanisms of Hg0 and NOx removal were proposed as Hg (ad) + [O] → HgO (ad), and 2NH3/NH4+ (ad) + NO2 (ad) + NO (g) → 2 N2 + 3H2O/2H+, respectively. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Pei Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huifang Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, 27401, USA.
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, 27401, USA
| | - Rui Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wanrong Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
23
|
A close-up to the promoting effect of tungsten in Ce/TiO 2 catalysts for the selective catalytic reduction of NO with NH 3. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Zhang Y, Huang T, Xiao R, Xu H, Shen K, Zhou C. A comparative study on the Mn/TiO 2-M(M = Sn, Zr or Al) O x catalysts for NH 3-SCR reaction at low temperature. ENVIRONMENTAL TECHNOLOGY 2018; 39:1284-1294. [PMID: 28504006 DOI: 10.1080/21622515.2017.1329345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
A series of TiO2-M(M = Sn, Zr or Al) Ox were prepared and manganese oxide (MnOx) was supported on the carrier by the traditional impregnation method for low-temperature selective catalytic reduction (SCR) of NOx with ammonia as a reductant. The obtained catalysts were characterized by XRD, BET, high-resolution transmission electron microscope (HRTEM), H2-TPR, NH3-TPD, X-ray photoelectron spectroscopy (XPS) and in situ Fourier-transform infrared (FT-IR) and their catalytic activities for NOx reduction with NH3 in the presence of SO2 were investigated comparatively. The results showed that the highest NOx conversion of over 90% could be obtained with the Mn/Ti-Sn catalyst at a wide range of temperature window of 150-270°C. The combination of characterization techniques, such as BET, XRD and HRTEM, revealed that manganese oxides were well dispersed on Ti-Sn. H2-TPR suggested that Ti-Sn and Ti-Zr supports could enhance the reduction ability of catalysts. Accordingly, Mn/Ti-Al exhibited worse activity at low temperature. XPS results were in good agreement with H2-TPR results, and Mn/Ti-Sn had more surface-reducible species of Mn4+ ions and more surface-adsorbed oxygen species, which was conducive to SCR reaction. The in situ FT-IR spectra of NH3 adsorption indicated that all the modified catalysts had more Lewis acid sites and the amide species at 1506 cm-1 had a certain influence on the catalytic reaction at low temperature. Mn/Ti-Zr showed a stronger resistance to SO2 but Mn/Ti-Al was affected more adversely and all the catalysts could not be restored to the initial catalytic activity after stopping feeding SO2. NH3-TPD revealed that the total acid amount of the Mn/Ti-Sn sample was larger than other samples, which indicated that the Ti-Sn solid solution could provide more surface acid sites over the catalyst.
Collapse
Affiliation(s)
- Yaping Zhang
- a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , People's Republic of China
| | - Tianjiao Huang
- a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , People's Republic of China
| | - Rui Xiao
- a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , People's Republic of China
| | - Haitao Xu
- a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , People's Republic of China
| | - Kai Shen
- a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , People's Republic of China
| | - Changcheng Zhou
- a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University , Nanjing , People's Republic of China
| |
Collapse
|
25
|
Sun X, Guo RT, Li MY, Sun P, Pan WG, Liu SM, Liu J, Liu SW. The promotion effect of Fe on CeZr2O
x
catalyst for the low-temperature SCR of NO
x
by NH3. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3318-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Sulfur and Water Resistance of Mn-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review. Catalysts 2018. [DOI: 10.3390/catal8010011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Mechanistic investigation of the different poisoning mechanisms of Cl and P on Mn/TiO 2 catalyst for selective catalytic reduction of NO x with NH 3. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Textual properties and catalytic performances of halloysite hybrid CeO2-ZrO2 nanoparticles. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Xu H, Yan N, Qu Z, Liu W, Mei J, Huang W, Zhao S. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8879-8892. [PMID: 28662330 DOI: 10.1021/acs.est.6b06079] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manganese oxide has been recognized as one of the most promising gaseous heterogeneous catalysts due to its low cost, environmental friendliness, and high catalytic oxidation performance. Mn-based oxides can be classified into four types: (1) single manganese oxide (MnOx), (2) supported manganese oxide (MnOx/support), (3) composite manganese oxides (MnOx-X), and (4) special crystalline manganese oxides (S-MnOx). These Mn-based oxides have been widely used as catalysts for the elimination of gaseous pollutants. This review aims to describe the environmental applications of these manganese oxides and provide perspectives. It gives detailed descriptions of environmental applications of the selective catalytic reduction of NOx with NH3, the catalytic combustion of volatile organic compounds, Hg0 oxidation and adsorption, and soot oxidation, in addition to some other environmental applications. Furthermore, this review mainly focuses on the effects of structure, morphology, and modified elements and on the role of catalyst supports in gaseous heterogeneous catalytic reactions. Finally, future research directions for developing manganese oxide catalysts are proposed.
Collapse
Affiliation(s)
- Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| | - Wei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| | - Jian Mei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| | - Songjian Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan RD, Minhang District, Shanghai, China
| |
Collapse
|
30
|
Cheng Y, Liu J, Zhao Z, Song W, Wei Y. Highly efficient and simultaneously catalytic removal of PM and NOx from diesel engines with 3DOM Ce0.8M0.1Zr0.1O2 (M = Mn, Co, Ni) catalysts. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Sun P, Guo RT, Liu SM, Wang SX, Pan WG, Li MY, Liu SW, Liu J, Sun X. Enhancement of the low-temperature activity of Ce/TiO 2 catalyst by Sm modification for selective catalytic reduction of NOx with NH 3. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Guo H, Feng J, Zhao Y, Wang S, Ma X. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO 2 adsorption. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Nakhostin Panahi P. Selective catalytic reduction of NO with NH3 over the SAPO-34 supported transition metal nanocatalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1184-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Lee T, Liou S, Bai H. Comparison of titania nanotubes and titanium dioxide as supports of low-temperature selective catalytic reduction catalysts under sulfur dioxide poisoning. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:292-305. [PMID: 27649768 DOI: 10.1080/10962247.2016.1231144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
A series of iron-manganese oxide catalysts supported on TiO2 and titanium nanotubes (TNTs) were studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in the presence of SO2. The results showed that the specific surface area and the amount of Brønsted acid sites were highly correlated. The results also demonstrated that higher Mn4+/Mn3+ ratios and larger specific surface areas might be the main reasons for the excellent performance of MnFe-TNTs catalyst after SO2 poisoning. The SO2 poisoning effect could be minimized by reducing the GHSV, increasing the reaction temperature, or increasing the [NH3]/[NO] molar ratio. The results also indicated that the formation of ammonium sulfate had a stronger effect on the NO conversion efficiency as compared to the formation of metal sulfate. Thus operating the low temperature SCR at above 230 oC to avoid the formation of ammonium sulfate would be the priority choice when SO2 poisoning is a concerned issue. Implications: Low-temperature selective catalytic reduction (SCR) has attracted increasing attention due to that it can reduce the energy consumption for the SCR process employed in industries such as steel plants and glass manufacturing plants. However, it also suffers from the sulfur dioxide (SO2) poisoning problem. This study investigates the possibility of using titania nanotubes (TNTs) as the support of Mn/Fe bimetal oxide catalysts for low-temperature SCR to reduce the SO2 poisoning. The results indicated that the MnFe-TNT catalyst can tolerate SO2 for a longer time as compared with the MnFe-TiO2 catalyst.
Collapse
Affiliation(s)
- TsungYu Lee
- a Institute of Environmental Engineering, National Chiao Tung University , Hsinchu , Taiwan , Republic of China
| | - Sihyu Liou
- a Institute of Environmental Engineering, National Chiao Tung University , Hsinchu , Taiwan , Republic of China
| | - Hsunling Bai
- a Institute of Environmental Engineering, National Chiao Tung University , Hsinchu , Taiwan , Republic of China
| |
Collapse
|
35
|
Zhang S, Zhang B, Liu B, Sun S. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: reaction mechanism and catalyst deactivation. RSC Adv 2017. [DOI: 10.1039/c7ra03387g] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The reactions over Mn-containing selective catalytic reduction (SCR) catalysts.
Collapse
Affiliation(s)
- Shengen Zhang
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Bolin Zhang
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Bo Liu
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Shuailing Sun
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
36
|
Xu H, Sun M, Liu S, Li Y, Wang J, Chen Y. Effect of the calcination temperature of cerium–zirconium mixed oxides on the structure and catalytic performance of WO3/CeZrO2 monolithic catalyst for selective catalytic reduction of NOx with NH3. RSC Adv 2017. [DOI: 10.1039/c7ra03054a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcined temperature of the carrier obviously affected SCR activity of catalysts, WO3/Ce0.68Zr0.32O2-500 showed the best low-temperature NH3-SCR activity due to its more Lewis acid sites and stronger redox property.
Collapse
Affiliation(s)
- Haidi Xu
- Institution of New Energy and Low-Carbon Technology
- Sichuan University
- Chengdu
- PR China
| | - Mengmeng Sun
- Institution of New Energy and Low-Carbon Technology
- Sichuan University
- Chengdu
- PR China
| | - Shuang Liu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yuanshan Li
- College of Chemical Engineering
- Sichuan University
- Chengdu 610064
- PR China
| | - Jianli Wang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yaoqiang Chen
- Institution of New Energy and Low-Carbon Technology
- Sichuan University
- Chengdu
- PR China
- College of Chemistry
| |
Collapse
|
37
|
Peng L, Huan L, Huayan L, Yinfei C, Zekai Z. Influence of tungsten on the NH3-SCR activity of MnWOx/TiO2 catalysts. RSC Adv 2017. [DOI: 10.1039/c7ra00427c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of bulk MnWOx and supported MnWOx/TiO2 catalysts with MnWO4 structure were prepared via self-propagating high-temperature synthesis (SHS), co-precipitation and impregnation methods.
Collapse
Affiliation(s)
- Lu Peng
- Department of Energy Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Li Huan
- Department of Energy Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Liu Huayan
- Department of Energy Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chen Yinfei
- Department of Energy Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Zhang Zekai
- Department of Energy Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
38
|
Mo S, Li S, Li J, peng S, Chen J, Chen Y. Promotional effects of Ce on the activity of Mn Al oxide catalysts derived from hydrotalcites for low temperature benzene oxidation. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Panahi PN. MnO x catalysts supported on γ-Al2O3, ZSM-5, and SAPO-34: Effect of support on the activity of Mn supported catalysts in NO abatement by NH3. RUSS J APPL CHEM+ 2016. [DOI: 10.1134/s1070427216080243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
WANG W, LI W, GUO R, CHEN Q, WANG Q, PAN W, HU G. A CeFeOx catalyst for catalytic oxidation of NO to NO2. J RARE EARTH 2016. [DOI: 10.1016/s1002-0721(16)60109-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO x with ammonia: Effect of the calcination temperature. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.04.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Xu H, Li Y, Xu B, Cao Y, Feng X, Sun M, Gong M, Chen Y. Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeWx/Ce0.68Zr0.32O2 monolithic catalyst for NH3-SCR. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Zhao L, Li C, Wang Y, Wu H, Gao L, Zhang J, Zeng G. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5–WO3/TiO2 catalyst. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01576f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The redox cycle (V4+ + Ce4+ ↔ V5+ + Ce3+) over V2O5–WO3/TiO2–CeO2 plays a key role in Hg0 oxidation and NO conversion.
Collapse
Affiliation(s)
- Lingkui Zhao
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Caiting Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Yan Wang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Huiyu Wu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Lei Gao
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Jie Zhang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| |
Collapse
|
44
|
Zhao L, Li C, Zhang X, Zeng G, Zhang J, Xie Y. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1471-1481. [PMID: 26370819 DOI: 10.1007/s11356-015-5143-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.
Collapse
Affiliation(s)
- Lingkui Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Xunan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jie Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yin'e Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
45
|
Li W, Fan G, Yang L, Li F. Surface Lewis acid-promoted copper-based nanocatalysts for highly efficient and chemoselective hydrogenation of citral to unsaturated allylic alcohols. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01084e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Preparation and characterization of CeOx@MnOx core–shell structure catalyst for catalytic oxidation of NO. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Väliheikki A, Kolli T, Huuhtanen M, Maunula T, Keiski RL. Activity Enhancement of W–CeZr Oxide Catalysts by SO2 Treatment in NH3-SCR. Top Catal 2015. [DOI: 10.1007/s11244-015-0469-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
LI J, SONG Z, NING P, ZHANG Q, LIU X, LI H, HUANG Z. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst. J RARE EARTH 2015. [DOI: 10.1016/s1002-0721(14)60477-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Chen L, Si Z, Wu X, Weng D, Wu Z. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts. J Environ Sci (China) 2015; 31:240-247. [PMID: 25968280 DOI: 10.1016/j.jes.2014.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 06/04/2023]
Abstract
A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O.
Collapse
Affiliation(s)
- Lei Chen
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhichun Si
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiaodong Wu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Duan Weng
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhenwei Wu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Wu G, Li J, Fang Z, Lan L, Wang R, Gong M, Chen Y. FeVO4 nanorods supported TiO2 as a superior catalyst for NH3–SCR reaction in a broad temperature range. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|