1
|
Thermal Input/Concentration Output Systems Processed by Chemical Reactions of Helicene Oligomers. REACTIONS 2022. [DOI: 10.3390/reactions3010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article describes thermal input/concentration output systems processed by chemical reactions. Various sophisticated thermal inputs can be converted into concentration outputs through the double-helix formation of helicene oligomers exhibiting thermal hysteresis. The inputs include high or low temperature, cooling or heating state, slow or fast cooling state, heating state, and cooling history. The chemical basis for the properties of the chemical reactions includes the reversibility out of chemical equilibrium, sigmoidal relationship and kinetics, bistability involving metastable states, positive feedback by self-catalytic chemical reactions, competitive chemical reactions, and fine tunability for parallel processing. The interfacing of concentration outputs in other systems is considered, and biological cells are considered to have been utilizing such input/output systems processed by chemical reactions.
Collapse
|
2
|
Castle SD, Grierson CS, Gorochowski TE. Towards an engineering theory of evolution. Nat Commun 2021; 12:3326. [PMID: 34099656 PMCID: PMC8185075 DOI: 10.1038/s41467-021-23573-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Biological technologies are fundamentally unlike any other because biology evolves. Bioengineering therefore requires novel design methodologies with evolution at their core. Knowledge about evolution is currently applied to the design of biosystems ad hoc. Unless we have an engineering theory of evolution, we will neither be able to meet evolution's potential as an engineering tool, nor understand or limit its unintended consequences for our biological designs. Here, we propose the evotype as a helpful concept for engineering the evolutionary potential of biosystems, or other self-adaptive technologies, potentially beyond the realm of biology.
Collapse
Affiliation(s)
- Simeon D Castle
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Claire S Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Bristol, UK.
- BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
McCarthy DM, Medford JI. Quantitative and Predictive Genetic Parts for Plant Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2020; 11:512526. [PMID: 33123175 PMCID: PMC7573182 DOI: 10.3389/fpls.2020.512526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Plant synthetic biology aims to harness the natural abilities of plants and to turn them to new purposes. A primary goal of plant synthetic biology is to produce predictable and programmable genetic circuits from simple regulatory elements and well-characterized genetic components. The number of available DNA parts for plants is increasing, and the methods for rapid quantitative characterization are being developed, but the field of plant synthetic biology is still in its early stages. We here describe methods used to describe the quantitative properties of genetic components needed for plant synthetic biology. Once the quantitative properties and transfer function of a variety of genetic parts are known, computers can select the optimal components to assemble into functional devices, such as toggle switches and positive feedback circuits. However, while the variety of circuits and traits that can be put into plants are limitless, doing synthetic biology in plants poses unique challenges. Plants are composed of differentiated cells and tissues, each representing potentially unique regulatory or developmental contexts to introduced synthetic genetic circuits. Further, plants have evolved to be highly sensitive to environmental influences, such as light or temperature, any of which can affect the quantitative function of individual parts or whole circuits. Measuring the function of plant components within the context of a plant cell and, ideally, in a living plant, will be essential to using these components in gene circuits with predictable function. Mathematical modeling will be needed to account for the variety of contexts a genetic part will experience in different plant tissues or environments. With such understanding in hand, it may be possible to redesign plant traits to serve human and environmental needs.
Collapse
|
4
|
Hoyos M, Huber M, Förstner KU, Papenfort K. Gene autoregulation by 3' UTR-derived bacterial small RNAs. eLife 2020; 9:58836. [PMID: 32744240 PMCID: PMC7398697 DOI: 10.7554/elife.58836] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
Negative feedback regulation, that is the ability of a gene to repress its own synthesis, is the most abundant regulatory motif known to biology. Frequently reported for transcriptional regulators, negative feedback control relies on binding of a transcription factor to its own promoter. Here, we report a novel mechanism for gene autoregulation in bacteria relying on small regulatory RNA (sRNA) and the major endoribonuclease, RNase E. TIER-seq analysis (transiently-inactivating-an-endoribonuclease-followed-by-RNA-seq) revealed ~25,000 RNase E-dependent cleavage sites in Vibrio cholerae, several of which resulted in the accumulation of stable sRNAs. Focusing on two examples, OppZ and CarZ, we discovered that these sRNAs are processed from the 3' untranslated region (3' UTR) of the oppABCDF and carAB operons, respectively, and base-pair with their own transcripts to inhibit translation. For OppZ, this process also triggers Rho-dependent transcription termination. Our data show that sRNAs from 3' UTRs serve as autoregulatory elements allowing negative feedback control at the post-transcriptional level.
Collapse
Affiliation(s)
- Mona Hoyos
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.,Faculty of Biology I, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Michaela Huber
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.,Faculty of Biology I, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Konrad U Förstner
- TH Köln - University of Applied Sciences, Institute of Information Science, Cologne, Germany.,ZB MED - Information Centre for Life Sciences, Cologne, Germany
| | - Kai Papenfort
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.,Faculty of Biology I, Ludwig-Maximilians-University of Munich, Martinsried, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Kelly CL, Harris AWK, Steel H, Hancock EJ, Heap JT, Papachristodoulou A. Synthetic negative feedback circuits using engineered small RNAs. Nucleic Acids Res 2019; 46:9875-9889. [PMID: 30212900 PMCID: PMC6182179 DOI: 10.1093/nar/gky828] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Negative feedback is known to enable biological and man-made systems to perform reliably in the face of uncertainties and disturbances. To date, synthetic biological feedback circuits have primarily relied upon protein-based, transcriptional regulation to control circuit output. Small RNAs (sRNAs) are non-coding RNA molecules that can inhibit translation of target messenger RNAs (mRNAs). In this work, we modelled, built and validated two synthetic negative feedback circuits that use rationally-designed sRNAs for the first time. The first circuit builds upon the well characterised tet-based autorepressor, incorporating an externally-inducible sRNA to tune the effective feedback strength. This allows more precise fine-tuning of the circuit output in contrast to the sigmoidal, steep input–output response of the autorepressor alone. In the second circuit, the output is a transcription factor that induces expression of an sRNA, which inhibits translation of the mRNA encoding the output, creating direct, closed-loop, negative feedback. Analysis of the noise profiles of both circuits showed that the use of sRNAs did not result in large increases in noise. Stochastic and deterministic modelling of both circuits agreed well with experimental data. Finally, simulations using fitted parameters allowed dynamic attributes of each circuit such as response time and disturbance rejection to be investigated.
Collapse
Affiliation(s)
- Ciarán L Kelly
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.,Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andreas W K Harris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Edward J Hancock
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
6
|
Andrews LB, Nielsen AAK, Voigt CA. Cellular checkpoint control using programmable sequential logic. Science 2018; 361:361/6408/eaap8987. [PMID: 30237327 DOI: 10.1126/science.aap8987] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Biological processes that require orderly progression, such as growth and differentiation, proceed via regulatory checkpoints where the cell waits for signals before continuing to the next state. Implementing such control would allow genetic engineers to divide complex tasks into stages. We present genetic circuits that encode sequential logic to instruct Escherichia coli to proceed through a linear or cyclical sequence of states. These are built with 11 set-reset latches, designed with repressor-based NOR gates, which can connect to each other and sensors. The performance of circuits with up to three latches and four sensors, including a gated D latch, closely match predictions made by using nonlinear dynamics. Checkpoint control is demonstrated by switching cells between multiple circuit states in response to external signals over days.
Collapse
Affiliation(s)
- Lauren B Andrews
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alec A K Nielsen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Voigt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol 2018; 53:12-19. [DOI: 10.1016/j.copbio.2017.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/21/2023]
|
8
|
Kassaw TK, Donayre-Torres AJ, Antunes MS, Morey KJ, Medford JI. Engineering synthetic regulatory circuits in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:13-22. [PMID: 29907304 DOI: 10.1016/j.plantsci.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 05/21/2023]
Abstract
Plant synthetic biology is a rapidly emerging field that aims to engineer genetic circuits to function in plants with the same reliability and precision as electronic circuits. These circuits can be used to program predictable plant behavior, producing novel traits to improve crop plant productivity, enable biosensors, and serve as platforms to synthesize chemicals and complex biomolecules. Herein we introduce the importance of developing orthogonal plant parts and the need for quantitative part characterization for mathematical modeling of complex circuits. In particular, transfer functions are important when designing electronic-like genetic controls such as toggle switches, positive/negative feedback loops, and Boolean logic gates. We then discuss potential constraints and challenges in synthetic regulatory circuit design and integration when using plants. Finally, we highlight current and potential plant synthetic regulatory circuit applications.
Collapse
Affiliation(s)
- Tessema K Kassaw
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Alberto J Donayre-Torres
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Mauricio S Antunes
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Kevin J Morey
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - June I Medford
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA.
| |
Collapse
|
9
|
Zhdanov VP. Proliferation of cells with aggregation and communication. Math Biosci 2018; 301:32-36. [PMID: 29391191 DOI: 10.1016/j.mbs.2018.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Cell proliferation is often considered to occur via front propagation with constant velocity. This scenario proposed by Fisher, Kolmogorov, Petrovsky, and Piskunov is based on the solution of the corresponding mean-field reaction-diffusion equations and does not take into account that due to adhesion the cells have tendency to aggregate and that the rate of cell division may depend on the cell-cell communication. Herein, the author presents extensive Monte Carlo simulations taking both these factors into account and illustrating that the former factor can dramatically modify the spatio-temporal kinetics of cell proliferation. In particular, the conventional relation between the front velocity and diffusion coefficient may fail, the front velocity may appreciably increase with increasing time, and/or the front may be partly or fully smeared on the realistic length scales.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
10
|
Zhdanov VP. mRNA function after intracellular delivery and release. Biosystems 2018; 165:52-56. [PMID: 29331630 DOI: 10.1016/j.biosystems.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Nanocarrier-mediated mRNA delivery and release into the cells with subsequent translation to protein is of interest in the context of the development of a new generation of drugs. In particular, this protein can play a role of a transcription factor and be used as a tool to regulate temporarily the genetic networks. The corresponding transient kinetics of gene expression are expected to depend on the mechanism and duration of mRNA release. Assuming the release to be rapid on the time scale of other steps, the author shows theoretically the mRNA-related transient features of gene expression occurring in stable, bistable, and oscillatory regimes in a single cell. Qualitatively, the results obtained are found to be fairly similar to those reported earlier for the situation when the release is slow. Thus, the features of the transient kinetics under consideration appear to be less sensitive to the duration of mRNA release compared to what one might expect.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
11
|
Programmable genetic circuits for pathway engineering. Curr Opin Biotechnol 2015; 36:115-21. [DOI: 10.1016/j.copbio.2015.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023]
|
12
|
Afroz T, Luo ML, Beisel CL. Impact of Residual Inducer on Titratable Expression Systems. PLoS One 2015; 10:e0137421. [PMID: 26348036 PMCID: PMC4562711 DOI: 10.1371/journal.pone.0137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on "all-or-none" systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering.
Collapse
Affiliation(s)
- Taliman Afroz
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Michelle L Luo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
13
|
Harris AWK, Dolan JA, Kelly CL, Anderson J, Papachristodoulou A. Designing Genetic Feedback Controllers. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:475-484. [PMID: 26390502 DOI: 10.1109/tbcas.2015.2458435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller.
Collapse
|
14
|
Trantas EA, Koffas MAG, Xu P, Ververidis F. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. FRONTIERS IN PLANT SCIENCE 2015; 6:7. [PMID: 25688249 PMCID: PMC4310283 DOI: 10.3389/fpls.2015.00007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/06/2015] [Indexed: 05/30/2023]
Abstract
As a result of the discovery that flavonoids are directly or indirectly connected to health, flavonoid metabolism and its fascinating molecules that are natural products in plants, have attracted the attention of both the industry and researchers involved in plant science, nutrition, bio/chemistry, chemical bioengineering, pharmacy, medicine, etc. Subsequently, in the past few years, flavonoids became a top story in the pharmaceutical industry, which is continually seeking novel ways to produce safe and efficient drugs. Microbial cell cultures can act as workhorse bio-factories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a selective flavonoid. Furthermore, metabolic engineering methodology is used to reinforce what nature does best by correcting the inadequacies and dead-ends of a metabolic pathway. Combinatorial biosynthesis techniques led to the discovery of novel ways of producing natural and even unnatural plant flavonoids, while, in addition, metabolic engineering provided the industry with the opportunity to invest in synthetic biology in order to overcome the currently existing restricted diversification and productivity issues in synthetic chemistry protocols. In this review, is presented an update on the rationalized approaches to the production of natural or unnatural flavonoids through biotechnology, analyzing the significance of combinatorial biosynthesis of agricultural/pharmaceutical compounds produced in heterologous organisms. Also mentioned are strategies and achievements that have so far thrived in the area of synthetic biology, with an emphasis on metabolic engineering targeting the cellular optimization of microorganisms and plants that produce flavonoids, while stressing the advances in flux dynamic control and optimization. Finally, the involvement of the rapidly increasing numbers of assembled genomes that contribute to the gene- or pathway-mining in order to identify the gene(s) responsible for producing species-specific secondary metabolites is also considered herein.
Collapse
Affiliation(s)
- Emmanouil A. Trantas
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological and Educational Institute of CreteHeraklion, Greece
| | - Mattheos A. G. Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic InstituteTroy, NY, USA
| | - Peng Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology CambridgeMA, USA
| | - Filippos Ververidis
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological and Educational Institute of CreteHeraklion, Greece
| |
Collapse
|
15
|
|
16
|
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 2014; 111:11299-304. [PMID: 25049420 DOI: 10.1073/pnas.1406401111] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA-derived compounds.
Collapse
|
17
|
Afroz T, Biliouris K, Kaznessis Y, Beisel CL. Bacterial sugar utilization gives rise to distinct single-cell behaviours. Mol Microbiol 2014; 93:1093-1103. [PMID: 24976172 DOI: 10.1111/mmi.12695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Abstract
Inducible utilization pathways reflect widespread microbial strategies to uptake and consume sugars from the environment. Despite their broad importance and extensive characterization, little is known how these pathways naturally respond to their inducing sugar in individual cells. Here, we performed single-cell analyses to probe the behaviour of representative pathways in the model bacterium Escherichia coli. We observed diverse single-cell behaviours, including uniform responses (d-lactose, d-galactose, N-acetylglucosamine, N-acetylneuraminic acid), 'all-or-none' responses (d-xylose, l-rhamnose) and complex combinations thereof (l-arabinose, d-gluconate). Mathematical modelling and probing of genetically modified pathways revealed that the simple framework underlying these pathways - inducible transport and inducible catabolism - could give rise to most of these behaviours. Sugar catabolism was also an important feature, as disruption of catabolism eliminated tunable induction as well as enhanced memory of previous conditions. For instance, disruption of catabolism in pathways that respond to endogenously synthesized sugars led to full pathway induction even in the absence of exogenous sugar. Our findings demonstrate the remarkable flexibility of this simple biological framework, with direct implications for environmental adaptation and the engineering of synthetic utilization pathways as titratable expression systems and for metabolic engineering.
Collapse
Affiliation(s)
- Taliman Afroz
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Konstantinos Biliouris
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yiannis Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|