1
|
Ding Y, Yuan J, Wang L, Jin N, Wang S, Li Y, Lin J. Semi-circle magnetophoretic separation under rotated magnetic field for colorimetric biosensing of Salmonella. Biosens Bioelectron 2023; 229:115230. [PMID: 36940661 DOI: 10.1016/j.bios.2023.115230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Magnetic separation was often applied to isolate and concentrate foodborne bacteria using immunomagnetic nanobeads before downstream bacterial detection. However, nanobead-bacteria conjugates (magnetic bacteria) were coexisting with excessive unbound nanobeads, limiting these nanobeads on magnetic bacteria to further act as signal probes for bacterial detection. Here, a new microfluidic magnetophoretic biosensor was elaboratively developed using a rotated high gradient magnetic field and platinum modified immunomagnetic nanobeads for continuous-flow isolation of magnetic bacteria from free nanobeads, and combined with nanozyme signal amplification for colorimetric biosensing of Salmonella. First, the platinum modified immunomagnetic nanobeads were mixed with the bacterial sample to form the magnetic bacteria, and magnetically separated to eliminate non-magnetic background. Then, the mixture of free immunomagnetic nanobeads and magnetic bacteria was injected with sheath flow (PBS) at higher flowrate into the semi-circle magnetophoretic separation channel under rotated magnetic field, which was generated by two repulsive cylindric magnets and their in-between ring iron gear, leading to continuous-flow isolation of magnetic bacteria from free immunomagnetic nanobeads because they suffered from different magnetic forces and thus had different deviating positions at the outlet. Finally, the separated magnetic bacteria and unbound magnetic nanobeads were respectively collected and used to catalyze coreless substrate into blue product, which was further analyzed using the microplate reader to obtain bacterial amount. This biosensor could determinate Salmonella as low as 41 CFU/mL in 40 min.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Jing Yuan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jianhan Lin
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Optimization of shaft-seal water system of cutter suction dredger based on high-efficiency centrifugal separation technology. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Huangfu C, Dong Y, Ji X, Wu N, Lu X. Mechanistic Study of Protein Adsorption on Mesoporous TiO 2 in Aqueous Buffer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11037-11047. [PMID: 31378070 DOI: 10.1021/acs.langmuir.9b01354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein adsorption is of fundamental importance for bioseparation engineering applications. In this work, a series of mesoporous TiO2 with various geometric structures and different aqueous buffer solutions were prepared as platforms to investigate the effects of the surface geometry and ionic strength on the protein adsorptive behavior. The surface geometry of the TiO2 was found to play a dominant role in the protein adsorption capacity when the ionic strength of buffer solutions is very low. With the increase in ionic strength, the effect of the geometric structure on the protein adsorption capacity reduced greatly. The change of ionic strength has the highest significant effect on the mesoporous TiO2 with large pore size compared with that with small pore size. The interaction between the protein and TiO2 measured with atomic force microscopy further demonstrated that the adhesion force induced by the surface geometry reduced with the increase in the ionic strength. These findings were used to guide the detection of the retention behavior of protein by high-performance liquid chromatography, providing a step forward toward understanding the protein adsorption for predicting and controlling the chromatographic separation of proteins.
Collapse
Affiliation(s)
- Changan Huangfu
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yihui Dong
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science , Luleå University of Technology , 97187 Luleå , Sweden
| | - Na Wu
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| |
Collapse
|
4
|
Zheng X, Xue Z, Wang Y, Zhu G, Lu D, Li X. Modeling of particle capture in high gradient magnetic separation: A review. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Okolie CL, Akanbi TO, Mason B, Udenigwe CC, Aryee ANA. Influence of conventional and recent extraction technologies on physicochemical properties of bioactive macromolecules from natural sources: A review. Food Res Int 2018; 116:827-839. [PMID: 30717014 DOI: 10.1016/j.foodres.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 02/02/2023]
Abstract
The incorporation of bioactive macromolecules from natural sources into marketable functional foods and nutraceuticals is of major significance to the agri-food sector. Interest in this area of research stems from the application of purified bioactive macromolecules in enhancing food quality and as an alternative to some pharmaceutical drugs for delivery of potential health benefits, with less associated adverse effects. To obtain bioactive macromolecules of high quality, appropriate use of extraction techniques and its influence on sensory and physicochemical properties is paramount. With the advent of technology-aided processes, there has been remarkable improvement in the extraction efficiency of these bioactive agents. An overview of the influence of these new techniques on extraction efficiency and physicochemical properties of proteins, lipids and fibers, which this detailed review provides, will prove to be a valuable resource to food industries aiming to maximize production of bioactive macromolecules from natural sources as well as the scientific community.
Collapse
Affiliation(s)
- Chigozie Louis Okolie
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada
| | - Taiwo O Akanbi
- Centre for Chemistry and Biotechnology, Deakin University, Locked Bag 20000, Geelong, VIC, Australia
| | - Beth Mason
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Alberta N A Aryee
- Food Science & Biotechnology Program, Department of Human Ecology, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
6
|
Knoll J, Dammert WR, Nirschl H. Integration of a microscope into a centrifuge for adhesion force measurement of particles. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Förster E, Schmidt A, Rhein F, Anlauf H, Nirschl H. Hetero Agglomeration Processes in a High-Gradient Magnetic Filter Design. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Lindner J, Nirschl H. A hybrid method for combining High-Gradient Magnetic Separation and centrifugation for a continuous process. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|