1
|
Kumar P, Park H, Yuk Y, Kim H, Jang J, Pagolu R, Park S, Yeo C, Choi KY. Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility. Crit Rev Biotechnol 2024; 44:530-546. [PMID: 37286203 DOI: 10.1080/07388551.2023.2176740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 06/09/2023]
Abstract
1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.
Collapse
Affiliation(s)
- Pradeep Kumar
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - HyunA Park
- Department of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Yong Yuk
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Hayan Kim
- Department of Life Science, Ajou University, Suwon, South Korea
| | - Jihwan Jang
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Raviteja Pagolu
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Chanseo Yeo
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
| | - Kwon-Young Choi
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
- Department of Environmental Engineering, Ajou University, Suwon, South Korea
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
3
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Tomšič M, Cerar J, Jamnik A. Supramolecular structure vs. rheological properties: 1,4–Butanediol at room and elevated temperatures. J Colloid Interface Sci 2019; 557:328-335. [DOI: 10.1016/j.jcis.2019.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/14/2023]
|
5
|
Zhou S, Zhuang Y, Zhu X, Yao F, Li H, Li H, Zou X, Wu J, Zhou H, Nuer G, Huang Y, Li S, Peng Q. YhjX Regulates the Growth of Escherichia coli in the Presence of a Subinhibitory Concentration of Gentamicin and Mediates the Adaptive Resistance to Gentamicin. Front Microbiol 2019; 10:1180. [PMID: 31191496 PMCID: PMC6545925 DOI: 10.3389/fmicb.2019.01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of adaptive resistance of Escherichia coli to aminoglycosides remain unclear. Our RNA-Seq study found that expression of yhjX was markedly upregulated during initial exposure to subinhibitory concentrations of gentamicin. The expression of yhjX was then downregulated dramatically during a second exposure to gentamicin compared to the first exposure. YhjX encodes a putative transporter of the major facilitator superfamily, which is known to be the sole target of the YpdA/YpdB two-component system, the expression of which is highly and specifically induced by pyruvate. To investigate the effect of yhjX on the adaptive resistance of E. coli, in the present study, we constructed yhjX deletion and complemented strains of E. coli ATCC25922. Changes in extracellular pyruvate levels of wide-type and yhjX mutant were measured to determine whether YhjX functions as a pyruvate transporter. The results showed that yhjX deletion improved the growth of E. coli in medium containing subinhibitory concentrations of gentamicin. The yhjX deletion mutant did not exhibit adaptive resistance to subinhibitory concentrations of gentamicin. YhjX might not function as a pyruvate efflux pump in E. coli but was associated with the decrease following a sharp increase in the extracellular pyruvate level. Our findings indicate that yhjX regulates the growth of E. coli in the presence of a subinhibitory concentration of gentamicin and mediates the adaptive resistance to gentamicin.
Collapse
Affiliation(s)
- Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yijing Zhuang
- Department of Science and Education, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Huifang Li
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi, China
| | - Xiaoguang Zou
- Department of Pharmacy, First People’s Hospital of Kashi, Kashi, China
| | - Jianhua Wu
- Department of Science and Education, First People’s Hospital of Kashi, Kashi, China
| | - Huifang Zhou
- Department of Clinical Laboratory, First People’s Hospital of Kashi, Kashi, China
| | - Gulibaier Nuer
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi, China
| | - Yuanchun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shao Li
- Department of Hepatobiliary II, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Peng
- Department of Hepatobiliary II, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qing Peng,
| |
Collapse
|
6
|
In vivo biosensors: mechanisms, development, and applications. ACTA ACUST UNITED AC 2018; 45:491-516. [DOI: 10.1007/s10295-018-2004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Abstract
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.
Collapse
|
7
|
Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1629-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhang Y, Liu D, Chen Z. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:299. [PMID: 29255482 PMCID: PMC5727944 DOI: 10.1186/s13068-017-0992-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/17/2023]
Abstract
C2-C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2-C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2-C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2-C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
9
|
Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M. Microbial production of short chain diols. Microb Cell Fact 2014; 13:165. [PMID: 25491899 PMCID: PMC4269916 DOI: 10.1186/s12934-014-0165-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/14/2014] [Indexed: 11/28/2022] Open
Abstract
Short chain diols (propanediols, butanediols, pentanediols) have been widely used in bulk and fine chemical industries as fuels, solvents, polymer monomers and pharmaceutical precursors. The chemical production of short chain diols from fossil resources has been developed and optimized for decades. Consideration of the exhausting fossil resources and the increasing environment issues, the bio-based process to produce short chain diols is attracting interests. Currently, a variety of biotechnologies have been developed for the microbial production of the short chain diols from renewable feed-stocks. In order to efficiently produce bio-diols, the techniques like metabolically engineering the production strains, optimization of the fermentation processes, and integration of a reasonable downstream recovery processes have been thoroughly investigated. In this review, we summarized the recent development in the whole process of bio-diols production including substrate, microorganism, metabolic pathway, fermentation process and downstream process.
Collapse
Affiliation(s)
- Yudong Jiang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Tao Cheng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Ning Tian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|