Wang C, Lü Y, Song C, Zhang D, Rong F, He L. Separation of emulsified crude oil from produced water by gas flotation: A review.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;
845:157304. [PMID:
35839883 DOI:
10.1016/j.scitotenv.2022.157304]
[Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The development and production of oil and gas fields would eventually result in a considerable amount of oily generated water, posing serious risks to humans and the environment. Nowadays, the oil concentration in the drainage stream of the produced water is strictly regulated, and many countries have established strict emission standards. As an indispensable oily wastewater treatment technology, flotation technology has attracted much attention because of its maturity, economy, practicality, and relative efficiency. Firstly, this paper summarizes and compares flotation techniques, such as dissolved gas flotation, induced gas flotation, electroflotation, and compact flotation units widely used in produced water treatment offshore in recent years. Considering the complexity of the mechanism of oil removal by air flotation, the mechanism of the oil droplet-bubble interaction is further discussed. The effects of flocculant, PH, and salinity on the oil droplet-bubble interaction in the flotation process were summarized from the perspective of the microscopic colloidal interface, which has a specific guiding role in improving the oil removal efficiency in the gas flotation process. Finally, the research status of produced water treatment by air flotation is summarized, and the feasible research direction is put forward.
Collapse